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Abstract In recent years, the anomalous magnetic moment
of the muon has triggered a lot of activity in the lat-
tice QCD community because a persistent tension of about
3.5 σ is observed between the phenomenological estimate
and the Brookhaven measurement. The current best phe-
nomenological estimate has an uncertainty comparable to the
experimental one and the error is completely dominated by
hadronic effects: the leading order hadronic vacuum polar-
ization (HVP) contribution and the hadronic light-by-light
(HLbL) scattering contribution. Both are accessible via lat-
tice simulations and a reduction of the error by a factor 4
is required in view of the forthcoming experiments at Fer-
milab and J-PARC whose results, expected in the next few
years, should reduce the experimental precision down to the
level of 0.14 ppm. In this article, I review the status of lat-
tice calculations of those quantities, starting with the HVP.
This contribution has now reached sub-percent precision and
requires a careful understanding of all sources of systematic
errors. The HLbL contribution, that is much smaller, still con-
tributes significantly to the error. This contribution is more
challenging to compute, but rapid progress has been made
on the lattice in the last few years.

1 Introduction

The anomalous magnetic moment of the muon is the devi-
ation of the gyromagnetic ratio gμ of the muon from 2,
the value predicted by the Dirac equation. This deviation
is explained by quantum corrections and has been measured
with an impressive precision of 0.5 ppm by the Brookhaven
experiment [1].

Interestingly, a persistent discrepancy of 3.5 standard devi-
ations has been observed in the last few years making this
quantity a key observable to search for new physics beyond

a e-mail: antoine.gerardin@cpt.univ-mrs.fr (corresponding author)

the Standard Model of particle physics. The main contribu-
tion to this observable comes from quantum electrodynamics
(QED) and can be accurately computed using a perturbative
expansion in the fine-structure constant α [2,3]. The small
electroweak corrections are also under control [4,5]. Finally,
although quarks and gluons do not couple directly to the
muon, they do interact via loop diagrams. Even if hadronic
contributions are relatively small, they completely dominate
the error budget and are the limiting factor in view of reduc-
ing the theory error. The current status of the Standard Model
contributions is summarized in Table 1.

Significant efforts have been made on the experimental
side and two new experiments (E989 at Fermilab and E34
at J-PARC) plan to reduce the error of the measurement by
a factor four in the next few years [6,7]. This has sparked a
lot of activity in the community to reduce the theory error
at the same level of precision and the Muon g − 2 Theory
Initiative1 was created to facilitate interactions among the
theoretical and experimental g − 2 communities. Recently,
this activity has been summarized in a white-paper [8].

More specifically, the theory error is dominated by effects
of the strong interaction that can be separated into two distinct
contributions depicted in Fig. 1: the Hadronic Vacuum Polar-
ization (HVP) that enters at order α2 in the electromagnetic
coupling and the Hadronic Light-by-Light scattering (HLbL)
contribution, at order α3. For the HVP contribution, the most
precise determination based on the dispersive approach has
reached a precision of 0.58% [9–11]. This is a data driven
method that relies on the analytical properties of the theory:
the hadronic contribution is obtained as a convolution inte-
gral between a QED weight function K , that is known ana-
lytically, and the R−ratio, obtained from the combination of
e+e− → hadrons cross section data that can be measured
experimentally

1 https://muon-gm2-theory.illinois.edu/.
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Fig. 1 Diagrams corresponding to the LO-HVP (left) and HLbL (right)
contribution to the muon (g − 2)μ. The red blobs represents the non-
perturbative contribution. Muon and photon are represented by plain
and wiggly lines respectively

ahvp
μ =

(αmμ

3π

)2
∫ ∞

0
ds

K (s)R(s)

s2 , (1)

R(s) = σ(e+e− → hadrons)

4πα2/(3s)
. (2)

This method is mostly limited by the availably of precise
experimental data. The dominant contribution comes from
the region [0.6−0.9] GeV which contains the rho resonance.
Unfortunately, in this energy region, the π+π− channel suf-
fers from tensions between different data sets [9,10]. Thus,
a second, independent determination would be valuable and
lattice QCD is the ideal tool to provide a first-principle result.
In this case, a precision below 0.25% would be needed to
reach the future experimental precision. Most lattice QCD
simulations are less precise, with uncertainties around 2%,
but significant progress has been made in recent years and
a very recent determination by the BMW collaboration has
sub-percent precision [12]. Several lattice groups are work-
ing on this contribution and independent checks of this latest
result are expected in the coming months.

The HLBL contribution appears at order α3 and is sup-
pressed compared to the HVP contribution such that an over-
all precision of 10%, or better, is needed. But its determina-
tion is also much more challenging, contributing significantly
to the theory error. Until recently, this contribution was esti-
mated using model estimates [13,14] and the Glasgow con-
sensus [15] largely relies on model calculations where sys-
tematic errors are difficult to quantify. Recently, two model-
independent approaches have been proposed. First, the dis-
persive approach: as compared to the HVP, this data-driven
method is much more complex and involves a four-point cor-
relation function [16–19]. Moreover, experimental data are
often incomplete or missing. However, the lack of experimen-
tal data can be partly compensated by lattice QCD, especially
for the dominant contributions. Second, it has been shown
that lattice QCD can also directly access this hadronic con-
tribution [20] and two collaborations have presented results
so far. This year, a first lattice estimate, with controlled errors,
has been published by the RBC/UKQCD collaboration [21].

This review is organized as follows: in Sect. 2, I present
the current status of the lattice determination of the hadronic
vacuum polarisation contribution. Different contribution are

discussed with emphasis on the challenges for reaching sub-
percent precision. The section ends with a compilation of
lattice results. In Sect. 3, I discuss related quantities that can
be used to perform cross-checks between lattice collabora-
tions or with the phenomenological estimate. In Sect. 4, I
summarize the status on the hadronic light-by-light contribu-
tion. I first briefly explain the methodology before presenting
the latest results for the direct lattice calculation. Finally, I
present results for the pseudoscalar-pole contributions, that
are expected to provide the dominant contribution, and the
forward light-by-light scattering amplitudes that can provide
valuable information on form factors that are used in phe-
nomenological models to estimate the HLbL contribution.

2 Hadronic vacuum polarization

The leading-order hadronic vacuum polarization is the domi-
nant hadronic contribution to the muon anomalous magnetic
moment. The corresponding diagram is shown on the left
panel of Fig. 1. The first lattice calculation started with [28]
where it was realized that this quantity is accessible via lat-
tice simulations. In recent years, several collaborations, with
different lattice discretizations, have published results and,
this year, the first publication with sub-percent precision has
been presented [12]. A further increase in precision is still
needed in view of the forthcoming experimental results and,
in the next sections, I summarize the current status of lattice
results.

2.1 Lattice determination

The LO-HVP contribution can be obtained through a convo-
lution integral of the subtracted polarization function �̂ with
a QED weight function over spacelike momenta

ahvp
μ =

(α

π

)2
∫ ∞

0
dQ2K (Q2)�̂(Q2) , (3)

�̂(Q2) = 4π
[
�(Q2) − �(0)

]
. (4)

Here α is the electromagnetic coupling and K is a known
analytic QED weight function [28] that depends on the
lepton mass. The polarization function is a scalar function
that parametrizes the hadronic vacuum polarization tensor,
defined in the continuum through the two-point correlation
function of electromagnetic currents

�μν(Q
2) =

∫
d4x 〈Jμ(x)Jν(0)〉 eiQ·x (5)

= (QμQν − δμνQ
2)�(Q2) (6)

where Jμ = 2
3uγμu− 1

3dγμd − 1
3 sγμs + 2

3cγμc− 1
3bγμb is

the hadronic part of the electromagnetic curent and Q denotes
the space-like momentum. The top quark is not shown here:
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Table 1 List of the Standard Model contributions to the anomalous magnetic moment of the muon

Contribution aμ × 1011 Refs.

QED (order O(α5)) 116 584 718.93 ± 0.10 [2,3]

Electroweak 153.6 ± 1.0 [4,5]

QCD

HVP (LO) 6 931 ± 40 [9,10,22–25]

HVP (NLO) −98.3 ± 0.7 [10]

HVP (NNLO) 12.4 ± 0.1 [26]

HLbL 94 ± 19 [8,27]

Total (theory) 116 591 810 ± 43 [8]

Experiment 116 592 089 ± 63 [1]

its contribution is known can be estimated using perturbation
theory. The b-quark contribution has been determined by the
HPQCD collaboration [29] who quote ab

μ = 0.271(37) ×
10−10.

In recent lattice calculations, the vacuum polarisation
function is obtained from the vector 2-point correlation func-
tion at vanishing three-momentum

�(Q2) = 4π2
∫

dt G(t)

[
t2 − 4

Q2 sin2
(
Qt

2

)]
(7)

with

G(t) = 1

3

3∑
k=1

∫
d3x 〈Jk(x, t)Jk(0)〉. (8)

The time momentum representation (TMR) [30] is then
obtained by inverting the integration over imaginary time
and momentum in Eqs. (3) and (7)

ahvp
μ =

(α

π

)2
∫ ∞

0
dx0 K̃ (t)G(t). (9)

Equivalently, one can start with the definition of the time-
moments [31,32]

Πk = (−1)k+1 G2k+2

(2k + 2)! , G2k = 2
∫ ∞

0
dt t2k G(t), (10)

which are the Taylor coefficients of the vacuum polarization
function at vanishing four-momentum transfer squared Q2 =
0 [32],

Π(Q2) = Π0 +
∞∑
k=1

Πk Q
2k . (11)

From the first few time moments, Padé approximants can be
constructed to estimate ahvp

μ [33].
We first consider the iso-symmetric theory, where the up

and down quark masses are degenerate and the electromag-
netic effects are neglected. The definition of iso-symmetric
QCD depends on the choice made to set the scale and the

Fig. 2 The quark-connected (left) and quark-disconnected (right)
Wick contractions for the LO-HVP in the isospin limit

quark masses in lattice simulations. It will be discussed in
Sect. 2.5 along with isospin breaking corrections. In this
approximation, the two-point correlation function can be
written as a sum of connected contributions for the light,
strange, charm and bottom quarks and a quark disconnected
contribution

G(t) = 5

9
Gl(t) + 1

9
Gs(t)+ 4

9
Gc(t)+ 1

9
Gb(t) + Gdisc(t).

(12)

The corresponding diagrams are depicted in Fig. 2 and the
shape of the integrand is shown on Fig. 3 for light, strange
and charm quarks. It is also interesting to consider the isospin
decomposition

G(t) = GI=0(t) + GI=1(t) (13)

with

GI=1(t) = 1

2
Gl(t) , GI=0(t) = 1

18
Gl(t) + 1

9
Gs(t)

+4

9
Gc(t) + 1

9
Gb(t) + Gdisc(t) (14)

where the iso-vector part contains 9/10 of the light quark
contribution while other 1/10 belongs to the iso-scalar part.

A lattice calculation with a sub-percent precision requires
to go beyond the iso-symmetric limit of QCD by includ-
ing QED and strong isospin-breaking corrections due to the
mass difference of the up and down quarks. If it is often con-
venient to separate the calculation into an iso-symmetric part
plus isospin breaking corrections, this separation is scheme
dependent and a direct comparison between lattice collabo-
rations becomes less trivial for intermediate quantities. This
will be discussed in Sect. 2.5.
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Fig. 3 Integrand for the light, strange and charm quark contributions
as a function of the Euclidean time. Extracted from [34]

Fig. 4 Different contributions to the leading order HVP in the muon
(g − 2) as defined in Eq. (12)

In Fig. 4, I show the relative size of each contribution to the
LO-HVP and, in the following sub-sections, I will present the
status and the challenges associated with each of them. I first
discuss the four contributions in Eq. (12) in the isospin limit.
Then, I present the status of the isospin breaking corrections
before concluding with a comparison between lattice results
for the total contribution.

2.2 The light quark contribution

The connected light-quark contribution is the dominant con-
tribution to the leading-order HVP and accounts for almost
90% of the total. It is obtained by inserting Gl from Eq. (12)
into the master formula (9). By definition, we consider the
isospin-symmetric limit and the isospin-breaking corrections
will be discussed later in Sect. 2.5. Among the main chal-
lenges to reach the desired precision are the statistical pre-
cision, the control of finite-size effects and a precise scale-

setting. Most collaborations are now working with at least
one ensemble at (or very close to) the physical pion mass,
eliminating the error from the chiral extrapolation.

2.2.1 Statistical precision

The tail of the integrand for the light quark contribution suf-
fers from a noise-to-signal problem. For the vector two-point
correlation function, one expects the noise over signal ratio
to increases exponentially as exp((mV − mπ )t) where mV

is the mass of the reseonance and the signal is eventually
lost at large Euclidean times. At the physical pion mass, the
integrand probes distances above 3 fm (see Fig. 6). Methods
to overcome the noise problem can be separated into two
categories:

– algorithmic improvements,
– description of the tail based on theoretical grounds.

Several algorithmic improvements are used to reduce the
cost of the simulation and to increase the statistical preci-
sion. The low-mode averaging technique [35,36] is used by
the BMW [12] and the RBC/UKQCD [37] collaboration and
in Ref. [38]. It consists in calculating exactly the low-modes
of the Dirac operator and it provides an exact estimate of
the low-part of the all-to-all propagator. A comparison with
stochastic sources is shown in Fig. 5. The part orthogonal to
these modes is generally evaluated using standard methods
such as stochastic sources. This can be combined with the
all-mode-averaging (or truncated solver) technique [39–41]
to reduce further the numerical cost. The latter is also used
in [42,43] and by the Fermilab/HPQCD/MILC (FHM) col-
laboration where a reduction of the cost by a factor of 2 has
been observed compared to standard stochastic sources [44].
Recently, a multi-level Monte Carlo integration approach has
been proposed to reduce exponentially the variance of the
correlator [45–47]. The application of this method to the LO-
HVP has been presented in [45] in the case of Wilson-Clover
fermions and with a pion mass of 270 MeV where a signif-
icant reduction of the error is observed at large Euclidean
times as compared to standard HMC simulations.

In addition to algorithmic improvements, a specific treat-
ment of the tail of the integrand is usually needed and the
long-distance behavior is treated in a different manner by
splitting the integration range at some Euclidean time t∗. This
separation relies on the observation that, at large Euclidean
times, the contribution to the signal comes from a relatively
small number of states.

A first strategy is to perform a (multi)-exponential fit to
extend the correlator above some Euclidean time t∗. Below
the cut, the lattice data are used to evaluate Eq. (9) and, above
the cut, the approximate correlator, reconstructed from the fit,
is used. This strategy is the one followed by the ETM col-
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Fig. 5 Comparison of the low-mode averaging technique combined
with all-mode-averaging with the traditional method with stochastic
sources. The two sets of curves correspond to the lower and upper
bound of the integrand as described in Eq. (16). The lattice data are
obtained at the physical pion mass. The plot is taken from [12]

laboration with the value t∗ in the range [1.6 − 1.8 fm] and
where a single state is included above the cut. The Fermi-
lab/HPQCD/MILC collaboration also uses this method with
the value t∗ ≈ 2 fm [44]. In this case, more than one state
is included and additional smeared interpolating operators
are used to stabilize the fit. This method is expected to work
well as long as the resonance state in the vector channel is
above the threshold, a valid assumption for large unphysi-
cal quark masses or at sufficiently coarse lattice spacing in
the staggered formalism. Otherwise, the two-pion like state
might be difficult to resolve on the lattice. Since the later is
lighter, it might lead to an underestimate of the light quark
contribution. In [44], the FHM collaboration has provided
evidence that the bias introduced by this method is below
their statistical uncertainty.

Another strategy, followed by Mainz [34,49] and more
recently by the RBC/UKQCD collaboration [48], is to per-
form a dedicated spectroscopy analysis in the vector channel
using a large basis of interpolating operators that couple to
single- and multi-particle state and using the Lüscher formal-
ism [50]. In this way, one can extract the masses and overlaps
of the low-lying eigenstates and the correlator for t > t∗ can
be reconstructed in a systematic way by introducing more
and more eigenstates in the lattice spectral decomposition

G(t) =
N−1∑
n=0

Zn

2En
e−Ent + O(e−EN t ), (15)

where Zn is an overlap factor. The important point is that
only a few states are required to saturate the integrand. The
overlaps and energies can be determined with relatively high
precision and the error on the reconstructed integrand grows
linearly with time, solving the noise/signal problem. A recon-
struction of the integrand is shown in Fig. 6 for both col-

Fig. 6 Reconstruction of the vector correlator using the method
described in the main text. Top : Mainz [34] with a pion mass of 200 MeV
and a ≈ 0.064 fm. Bottom : RBC/UKQCD at the physical pion mass
[48] and a ≈ 0.114 fm. The different curves are obtained by adding
more and more states in the spectral decomposition. One can see that
more sates are required as le pion mass is lowered

laborations. Recently, the FHM collaboration has presented
preliminary result using the staggered formalism [51]. In this
case, an additional difficulty comes from the contribution of
the 15 copies of the meson with different tastes.

Finally, the bounding method introduced in [37,52,53], or
its further improvements, provide a systematic way to cut the
integration range in time. The idea is to find a compromise
between the statistical precision that increases with t∗ and the
systematic error introduced by the specific treatment of the
tail for t > t∗. In practice, one can derive rigorous lower and
an upper bounds for the integrand and t∗ is chosen such that
both agree within statistical error. In its original formulation,
the bounds are

0 ≤ G(t) ≤ G(tc)e
−E0(t−tc), t ≥ tc. (16)

The lower bound is a consequence of the positivity of the
correlator. For the upper bound, one notices that the corre-
lator decreases faster than the lowest lying state. Here E0 is
the ground state of the spectrum in finite volume and in the
isovector channel. More stringent lower bounds have been
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proposed in the literature [34,37] and these methods has been
employed in [12,34,37,38,42].

2.2.2 Finite-size effects

Lattice simulations are inevitably performed in a finite vol-
ume and need to be corrected for this. In the case of the HVP,
one expects the isovector channel to be mostly affected and
one usually assumes finite-size effects (FSE) to be negligible
in the isoscalar channel, dominated by three-pions states at
long distances. If FSE are exponentially suppressed with the
physical size of the lattice, they are not negligible for typical
lattice sizes that are currently used to compute ahvp

μ . At the
physical pion mass and with a physical volume of about 6 fm
(mπ L ≈ 4), this correction turns out to be at the level of 3%
of the total contribution. Thus, for a few permil precision,
this correction needs not only to be included, but also to be
known with a relative precision better than 10%. This is cur-
rently one of the most important systematic corrections that
need to be applied to lattice data and a careful treatment is
thus mandatory for the target precision. Several theory-based
approaches have been proposed, with major improvements
in the recent years, and the results have been confirmed by
direct, large-volume, lattice simulations.

Chiral Perturbation Theory. The natural framework to
study finite-size corrections to aμ is Chiral Perturbation The-
ory (ChiPT). In early calculations, FSE were estimated using
NLO ChiPT [37,53]. The FHM collaboration [44] uses an
extended version of ChPT that also includes the ρ meson
and photons [54,55]. More recently, the NNLO correction in
ChiPT have been determined in [38,56] and, in a recent paper
[57], the authors have shown that ChiPT can, in principle, be
used to compute FSEs at any order in the effective field the-
ory. The NNLO correction is found to be quite large and of the
order of 0.40.45 times the NLO correction at physical pion
mass and for spatial volumes in the range L = 5.4 − 5.8 fm.
In [38], the systematic error is obtained by assuming a sim-
ilar relative correction for the next order. It corresponds to
a 15% uncertainty. It is interesting to note that it translates
into a 0.5% error on the total contribution, underlining the
importance of this correction for a few permil precision.

Time-like pion form factor and the Lüscher formalism. A
second approach is based on the Lüscher formalism and the
knowledge of the time-like pion form factor. In this method,
the isovector part of the correlation function is evaluated in
both finite and infinite volumes using a spectral decompo-
sition. The time-like pion form factor enters in the determi-
nation of the finite-volume matrix elements. The theoretical
framework has been derived in [30,50,58] and has been used
for the first time in [32]. This method is used by the Mainz col-
laboration [34], where the pion form factor is obtained from

Fig. 7 Test of the finite-size correction procedure using the time-like
pion form factor and the Luescher formalism. The pion mass is 280 MeV
and two volumes with L = 2.8 fm and L = 4.1 fm are used (it corre-
sponds to mπ L ≈ 4 and 6 respectively). Figure extracted from [34]

a dedicated lattice calculation [49]. The procedure has been
explicitly tested on ensembles with a pion mass of 280 MeV
as can be seen on Fig. 7. In [59], the ETM collaboration uses
a similar strategy to estimate FSE: they assume a Gounaris-
Sakurai parametrization of the pion form factor and the asso-
ciated parameters Mρ and Γρ are obtained from a fit to the
lattice data. This strategy is embedded in the so-called ana-
lytical representation of the correlator that also includes a
description of the correlator at short distances. In their recent
publication [12], the BMW collaboration has also studied
this method assuming a Gounaris–Sakurai parametrization
of the pion form factor with parameters estimated from phe-
nomenology. They obtained results perfectly compatible with
their direct lattice calculation using large volumes.

Hansen-Patella method. More recently, a new method has
been proposed where finite-size effects are expressed in
terms of the forward Compton amplitude of the pion [60]
in an expansion in exp[−|n|mπ L]. The first publication
was restricted to the dominant exp[−Mπ L] contribution and
the sub-dominant contributions were neglected. However,
the latter are numerically relevant and this limitation has
been overcome in a more recent publication [61,62] where
sub-leading terms exp[−√

2Mπ L] and exp[−√
3Mπ L] have

been included. Numerically, one observes a nice convergence
of this expansion. This methods has been employed on lattice
data for the first time by the BMW collaboration [12]. The
results are found to be numerically compatible with NNLO
ChPT and the previous method based on the time-like pion
form factor. Interestingly, this method also provides the lead-
ing correction for the finite time-extent of the lattice.

Direct lattice calculation. An other approach is to perform
dedicated lattice calculations using small and large physical

123



Eur. Phys. J. A (2021) 57 :116 Page 7 of 31 116

Fig. 8 Difference of the light quark contribution ahvp
μ (rcut) on three

lattices with 644, 1284 and 643×128 (the spatial extents in physical units
are L = 5.4 fm and L = 10.8 fm and the pion mass is mπ ≈ 135 MeV.
The plot is taken from [43]

volumes at the same bare lattice parameters. The main chal-
lenge of such calculations is to get a signal at large Euclidean
times where FSEs are most important. Due to the large vol-
umes required by this method, it is numerically expensive
even if a relatively coarse lattice spacings can be used. The
PACS collaboration have presented results using two vol-
umes of L = 5.4 fm and L = 10.8 fm [43]. On the larger
volume, ChiPT can be used to estimate the small persistant
FSE. As can be seen on Fig. 8, their result differs by about 1
standard deviation with the NLO ChiPT estimate, confirm-
ing the prediction obtained from other approaches, while with
relatively big uncertainties of about 30%. A similar work has
been presented by RBC/UKQCD [63] where they found a
correction of 21.6(6.3) × 10−10 at the physical pion mass
between two volumes L = 6.22 fm and L = 4.66 fm. This
correction is almost twice as big at the correction obtained
using NLO ChiPT. This method is also the one used by the
BMW collaboration where a lattice with L ≈ 10.7 fm was
used [12]. They found a correction of 18.7(2.5) × 10−10 at
the physical pion mass as compared to L = 6.3 fm. This
observation is in line with previous studies but with higher
precision.

Most lattice collaborations correct lattice data for FSE on
each ensemble prior to the continuum (and chiral) extrapo-
lation. When using staggered quarks, finite-size effects are
entangled with the taste-breaking corrections and therefore
with the continuum extrapolation. This motivates the BMW
collaboration to first compute ahvp

μ in the continuum limit, at
a reference volume with L ≈ 6.3 fm and, in a second step,
to correct this continuum extrapolation for FSEs.

To conclude, three theory-based approaches are known to
estimate FSEs. Remarkably, they provide very similar esti-
mates suggesting that this correction is under control at the

level of 10%. This has been further confirmed by the recent
large-volume calculation performed by the BMW collabo-
ration. FSEs are also important for the quark disconnected
contribution, as discussed in Sect. 2.4, and for the isospin-
breaking correction discussed in Sect. 2.5.

2.2.3 Chiral extrapolation/interpolation

The chiral extrapolation is still a significant source of error
for lattice collaborations that are not working directly at the
physical pion mass. In Ref. [34], the Mainz group observes
a significant enhancement of the signal for the light quark
contribution between the ensemble at the physical pion mass
and another ensemble with a 220 MeV pion mass. The
ETM collaboration does not yet include ensemble directly
at the physical pion mass [59]. However, such an ensem-
ble is now available and has been used in a recent paper on
the ratios of the hadronic contributions to the lepton g − 2
[64]. For collaborations working close to the physical pion
mass [37,38,43,44,53], a smooth interpolation is required
and does not introduce a significant error. Fortunately, it con-
cerns most collaborations and this issue has become less rel-
evant in recent analysis.

2.2.4 Lattice spacing and continuum extrapolation

Although the anomalous magnetic moment is a dimension-
less quantity, the weight function K̃ in Eq. (9) depends on the
muon mass that eventually needs to be converted into lattice
units. To study the impact of the scale setting uncertainty, the
authors of [32] have estimated the relative error on ahvp

μ from
error propagation

�ahvp
μ =

∣∣∣∣∣a
dahvp

μ

da

∣∣∣∣∣ · �a

a
=

∣∣∣∣∣mμ

dahvp
μ

dmμ

∣∣∣∣∣ · �a

a
, (17)

and obtained �ahvp
μ /ahvp

μ ≈ 1.8%. Therefore, a two-permil

precision forahvp
μ translates into a permil determination of the

scale setting. This is probably one of the biggest challenge for
lattice QCD and requires the inclusion of isospin-breaking
effects. It should be noted that this relation has been derived
in the time-momentum representation given by Eq. (9) and
might differ if one uses a different estimators. A review of
scale setting can be found in [65].

A continuum extrapolation is also required and this step
depends significantly on the action and the choice of opera-
tors that are used in lattice simulations. All results presented
in Fig. 9 are obtained using lattice formulations where O(a)

lattice artifacts have been removed and the leading discretiza-
tion errors are therefore expected to be O(a2). Recently, the
relevance of log-corrections for high precision calculations as
been emphasized in [66]. In simulations performed with stag-
gered quarks, the leading source of discretization effects are
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Fig. 9 Comparison of lattice results for the connected light quark
contribution to the leading-order HVP. The results are extracted from
[12,34,37,38,42–44,67,68]. The BMW point includes the FSE correc-
tion for the light quark contribution quoted in [12]

due to taste-breaking effects. Taste splitting is generally cor-
rected for using staggered chiral perturbation theory (SχPT)
[12,38,44]. The continuum extrapolation turns out to be the
main source of systematic error in the recent publication by
the BMW collaboration [12]. Obviously, at least three lattice
spacings should be used to check the expected scaling.

2.2.5 Results and conclusion

A summary of the results for the light-quark contribution, at
the physical point, in the continuum limit and in infinite vol-
ume, but in the isospin-symmetric limit, is depicted in Fig. 9.
We observe some tension between different collaborations.
Since the systematic error is not negligible and is correlated
between different collaborations (especially for the FSE cor-
rection), further work is needed here. Possible cross-checks
among lattice groups but also with phenomenology will be
further discussed in Sect. 3.

2.3 The strange and charm quark contributions

The strange quark contribution is much simpler to evalu-
ate on the lattice. As can be seen in Fig. 3, the integrand
decreases faster than the light quark contribution and there is
no noise problem at large Euclidean times. No sophisticated
treatment of the tail is needed and a high statistical preci-
sion is easily achieved by integrating the lattice data only.
Finite-size effects are much smaller than for the light-quark
contribution and can be safely neglected [33,69]. The results
for different lattice collaborations are depicted in Fig. 10 and
we observe a nice agreement between all of them. A signifi-
cant source of uncertainty still lies in the determination of the
scale setting, as discussed in Sect. 2.2.4. It mostly explains
the spread of the errors and can be improved independently.
An other source of systematic uncertainty originates from the

Fig. 10 Comparison of lattice results for the connected strange quark
contribution to the leading-order HVP. The results are extracted from
[12,31,34,37,43,68]

Fig. 11 Comparison of lattice results for the connected charm quark
contribution to the leading-order HVP. The results are extracted from
[12,34,37,43,68,70]

tuning the of the strange quark mass at the physical point. The
strange-quark contribution amount to about 8% of the total
LO-HVP and a relative precision of 2.5% is required for a
two permil precision. This is already achieved by many of
the collaborations and this is not the main challenge for the
future.

The integrand of the charm quark contribution is peaked
at even smaller Euclidean times. As for the strange quark
contribution, a high statistical precision is easily achieved.
In that case, the main difficulty lies in the continuum extrap-
olation and the control of discretization effects. As can be
seen in Fig. 3, it becomes difficult to sample the integrand
correctly and small lattice spacings are required. The results
for various collaborations are shown in Fig. 11 and, as for
the strange quark contribution, we observe a very good agree-
ment between groups. This contribution is about 2% of the
total contribution. For most collaborations, the current uncer-
tainty is already below the required precision for a two per-
mil determination and does not represent a challenge for the
future target precision.
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Fig. 12 Integrated value of ahvp,disc
μ obtaining using Eq. (9) and inte-

grating the lattice data up to t ≤ T . Extracted from [74]

2.4 The quark-disconnected contribution

Thanks to the structure of the electromagnetic current, the
quark-disconnected contribution to the LO-HVP contribu-
tion can be factorized as [71]

Gdisc(t) = −1

9

1

3

3∑
k=1

〈 (
Ll
k(t) − Ls

k(t)
) (

Ll
k(0) − Ls

k(0)
) 〉

(18)

where the loop on a given timeslice and with a quark of flavor
f is defined by

L f
k (t) = 1√

V

∑
x

Tr
[
S f (x, x)γk

]
. (19)

with S f the quark propagator. Strictly speaking, Eq. (19)
holds only for Wilson fermions with a local current and
needs to be adapted to other discretizations. Here, we assume
mu = md and isospin-breaking corrections will be discussed
later in Sect. 2.5. We also neglect the valence charm quark
contribution that has been shown to be much smaller than the
current statistical precision [53]. From Eq. (18), it is clear
that this contribution vanishes in the SU(3) f limit where
mu = md = ms .

The calculation of the loop functions requires the estima-
tion of all-to-all propagators S f on each time-slice. The latter
are notoriously difficult to estimate in lattice QCD and require
the use of sophisticated noise-reduction techniques. Since
this contribution can be expressed as a difference between
light and strange loops, we expect the signal to be dominated
by low energy physics. In particular, it is important that noise
reduction techniques maintain the light- minus strange struc-
ture to benefit from the cancellation of noise between the light
and strange-quark contributions. This is the case of the low-
mode averaging technique used by the RBC/UKQCD and
BMW collaborations where the low-modes are computed
for eigenvalues up to (or close to) the strange quark mass.

In practice, the low-mode averaging described in Sect. 2.2.1
is often combined with the all-mode-averaging (or truncated
solver) technique [39–41] to estimate the stochastic part of
the estimator. In Ref. [72], the Mainz group uses hierarchical
probing [73], which replaces the sequence of noise vectors
by one noise vector multiplied with a sequence of Hadamard
vectors. The same noise vectors are used for both the light
and strange quark inversions. In any case, the signal is even-
tually lost at large Euclidean times t ≈ 2 − 2.5 fm and, as
for the light quark contribution, the bounding method can be
used to cut the integration range (Fig. 12).

Finite-size effects are also relevant for this contribution.
If one assumes FSEs to be negligible in the iso-scalar chan-
nel, the quark-disconnected contribution, taken separately,
receives the same FSE correction as the light quark contri-
bution but with a factor −1/10. At the physical pion mass
and with a volume of 5.5 fm, they are about 15% for the
RBC/UKQCD collaboration. The systematic error associated
to this correction is, however, negligible and under control.

The quark-disconnected contribution has been computed
by fewer collaborations, including RBC/UKQCD [37,74],
BMW [12,53] and the Mainz group [32,34]. An early calcu-
lation has been presented by the the HPQCD collaboration in
[75], but on a single ensemble with a heavy pion of 391 MeV.
The published results read

BMW : ahvp,disc
μ = −13.2(1.3)stat(1.3)syst × 10−10

Mainz : ahvp,disc
μ = −23.2(2.2)stat(4.5)syst × 10−10

RBC : ahvp,disc
μ = −11.2(3.3)stat(2.3)syst × 10−10

and are summarized in Fig. 14. This contribution is negative
and, in magnitude, amounts to about 2% of the total contri-
bution. A precision below 10% is therefore needed to reach
the two permil precision.

Recently, the FHM collaboration [76] has presented pre-
liminary results shown in Fig. 13. They are obtained using
three lattice spacings at the physical pion mass and the extrap-
olation is in good agreement with previous results.

We observe a slight tension of about 2σ between the pub-
lished Mainz results and the other collaborations. The sig-
nificance of this tension should however be tempered by
noticing that most results are dominated by systematic error
and, for the RBC collaboration, a single lattice spacing with
a = 0.11 fm was used. The results of the Mainz group was
obtained on a reduced set of ensembles that includes 3 lattice
spacings but no ensemble directly at the physical pion mass
such that a chiral extrapolation was required and turned out
to be the main source of uncertainty (since the isoscalar con-
tribution is not singular in the chiral limit, the disconnected
piece has to compensate the singularity present in the light
quark contribution [72]). The Mainz group has recently pre-
sented a preliminary update [77] that includes more ensem-
bles, including one at the physical pion mass and the new
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Fig. 13 Preliminary summary of the disconnected results for the FHM
collaboration. Slides presented during the workshop The hadronic vac-
uum polarization from lattice QCD at high precision by the Muon g−2
Theory Initiative [76]

Fig. 14 Comparison of lattice results for the quark-disconnected con-
tribution, to the leading-order HVP, in the isospin limit. The results are
extracted from [12,34,37]. The BMW point includes the FSE correction
for the light quark contribution quoted in [12]. New preliminary results,
in blue, have been presented during the workshop The hadronic vacuum
polarization from lattice QCD at high precision, 16–20 November 2020

noise reduction technique proposed in [78]. Their prelimi-
nary results ahvp,disc

μ = −14.8 ± 2.8 × 10−10 reduces the
tension. The BMW collaboration works directly as the phys-
ical pion mass but did not include their finest lattice spacing.

The precision of the BMW collaboration has reached 10%
and recent new calculations confirm the overall size of this
contribution. Further cross-checks on this important contri-
bution would be highly desirable and a first step might be
to compare the results obtained from the window method
described in Sect. 3.1.

2.5 Isospin-breaking corrections

Most lattice simulations are performed in the iso-symmetric
limit where mu = md . However, the current level of preci-
sion of the HVP contribution requires the inclusion of isospin
breaking effects. There are two sources of isospin-breaking
corrections in nature: first the mass of the up and down quarks
are measured to be different, second the electromagnetic cor-
rections due to the different electric charges of the quarks.
These effects are expected to be of order O(α) ≈ 1% and

O((md − mu)/ΛQCD) ≈ 1%, respectively. Recent calcula-
tions have confirmed that this contribution is below 1% (see
Table 2).

Those calculations are numerically challenging. Numer-
ous diagrams need to be evaluated and a good statistical pre-
cision, at large Euclidean times, is difficult to achieve. Similar
methods as the one discussed for the light quark contribution
can be used. Naively, finite-size effects can also be large:
corrections are expected to fall off as powers of 1/L , where
L is the spatial extent of the lattice. However, in [79], the
authors derived analytic expressions for the electromagnetic
finite-volume correction to the two-pion contribution to the
LO-HVP where it was shown that the leading term is 1/L3.
For typical large volumes with mπ L > 4, this correction is
shown to be at the level of a few percent and would thus be
negligible for a few per-mil accuracy in the LO-HVP. The
scale-setting, which is one of the limiting factor in term of
precision, as discussed in Sect. 2.2.4, needs to include IB
corrections as well. Furthermore, if the vector current needs
to be renormalized, isospin corrections need to be included
there as well.

After a brief overview of the methods used to include iso-
spin breaking effects, I present recent results. Until recently,
only a sub-part of the diagrams, expected to be domi-
nant, have been estimated. In particular, the ETM and the
RBC/UKQCD collaboration have worked within the electro-
quenched approximation. Recently, the BMW collaboration
has published a first estimate of all diagrams including elec-
tromagnetic sea-quark effect [12].

2.5.1 Methods

To include QED on the lattice, we are interested in evaluating
the path integral in presence of both QCD and QED

〈O〉 = 1

Z

∫
D[U ]D[A]D[ψ,ψ] O e−S[U,A,ψ,ψ], (20)

with the total action

S[U, A, ψ,ψ] = Sg[U ] + Sγ [A]
+

∑
f

ψ f D[U, A; e, q f ,m f ]ψ f (21)

where Sg and Sγ are the gluon and photon actions and D is
the Dirac operator associated to the quark of flavor f . The
latter includes coupling to photons and it depends on the
quark mass m f , the quark electric charge e f and the gluonic
coupling g. The first step is to regularize the photon action
on the lattice and the associated difficulties are discussed in
detail in [80,81]. All results for the HVP are obtained using
the QEDL prescription [82] where the spatial zero modes of
the photon field in finite volume are explicitly removed.

Two methods are used to include QED effects inahvp
μ using

lattice simulations.
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Table 2 Summary of the results for different lattice collaborations. We
quote separately the connected (Fig. 15 top) and disconnected connected
(Fig. 15 bottom) contributions in the electro-quenched approximation

from the other sub-leading diagrams of Fig. 16. As explained in the text,
those numbers are scheme dependent and a direct comparison between
lattice collaborations is not trivial

Figure BMW [12] ETMC [68,69] FHM [88] RBC/UKQCD [37] QCDSF [85,89]

(15) – top – QED −1.27(40)(33) 1.2 (1.0) × 5.9 (5.7)

(15) – top – SIB 6.59 (63) (53) 6.0 (2.3) 9.4(4.5) 10.6 (4.3) (6.6)

(15) – bottom – QED −0.55(15)(11) × × −6.9(2.1)(1.4)

(15) – bottom – SIB −4.63(54)(69) × × ×
(16) 0.37 (20) (19) × × ×
Charm × −0.0344(21) × × ×
Total 0.46 (91) (98) 7.1 (2.9) 9.4(4.5) 9.5 (10.2) < 1%

The first methods treats QED non-perturbatively. It con-
sists in generating gauge configurations for the full QED+QCD
theory [83]. Most simulations are performed in the electro-
quenched approximation where the the sea-quarks are con-
sidered as electrically neutral. This approximation allows to
generate the U(1) photon fields independently of the SU(3)
gauge fields and then reduces the computational cost. For
the strong-isospin-breaking effects, different values for the
quark masses can be used in the action. Here, the results are
obtained to all orders in α (or within the electro-quenched
approximation). For the HVP, this method has been studied
by the RBC collaboration [84] and the QCDSF collaboration
[85].

The second approach to compute isospin breaking effects
is based on the perturbative expansion of the path integral in
powers of the fine structure constant, α, and the mass differ-
ence of the quark compared to the mass in the iso-symmetric
theory Δm f = (m f − m) [86,87]. Since it is a perturbative
expansion around the iso-symmetric theory, the same SU(3)
gauge ensembles can be used. The relevant diagrams for the
HVP are shown in Figs. (15) and (16). Additional diagrams,
that are specific to the regularization used on the lattice, are
not shown. Corrections to the connected and disconnected
parts have been separated. The second set of plots include
diagrams beyond the electro-quenched approximation. This
methods is used by the ETM [68,69], RBC/UKQCD [37]
and BMW [12] collaborations

A comparison between the two methods has been pre-
sented by the RBC/UKQCD collaboration in [84].

2.5.2 Separation prescription

The separation between strong isospin breaking and QED
effects is prescription dependent. Furthermore, the defini-
tion of the physical point in the iso-symmetric theory is also
scheme dependent. Only the full contribution, in QCD + QED
simulations can be unambiguously defined. In that sense,
some care needs to be taken when comparing the results
from different lattice calculations, as in Table 2. However,

Fig. 15 Top: Dominant QED and strong isospin-breaking diagrams for
the quark-connected (top panel) and the quark-disconnected (bottom
panel) contributions

Fig. 16 Diagrams beyond the electro-quenched approximation for the
quark-connected (top panel) and the quark-disconnected (bottom panel)
contributions (diagrams are 1/Nc suppressed)

the ambiguity between different schemes is expected to be
small (O(αm f ) with m f the quark mass) compared to the
current statistical precision. Further details on the prescrip-
tions used by each group can be found in [8] and references
therein.

2.5.3 Results

The first set of diagrams, depicted in the top panel of Fig. 15,
represents the correction to the quark-connected contribution
in the electro-quenched approximation, where QED correc-
tions for the sea-quarks are not taken into account. The right
most diagram is the strong isospin correction while the other
two diagrams are QED corrections. Those diagrams have
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Fig. 17 QED and strong-isospin corrections to ahvp
μ for five ensembles

with the same bare lattice parameters but different volumes. The red line
corresponds to a fit of the form A + Be−Mπ L and the blue line to a fit
of the form C + D/Ln with n = 3 (dashed line) or n = 6 (dotted line).
Figure extracted from [67]

been computed by the ETM [68], the RBC/UKQCD [37]
and the BMW [12] collaborations.

The second set of diagrams in Fig. 15 (bottom panel)
has been computed by both the RBC/UKQCD [37] and the
BMW [12] collaborations. They correspond to corrections
to the quark-disconnected contribution, in the same electro-
quenched approximation. The RBC/UKQCD collaboration
has evaluated only the first diagram of Fig. 16, that is expected
to be dominant.

Finally, beyond the electro-quenched approximation, one
has to compute the diagrams in Fig. 16. Only the BMW col-
laboration [12] has presented results so far. Those diagrams
are expected to be at least either SU(3) f or 1/Nc suppressed
and are more challenging to compute on the lattice. Fortu-
nately, from Table 2, they appear to be negligible even for a
precision of a few permil on ahvp

μ .
A direct check of finite-size effect corrections has been

done in [68] where different volumes with the same bare lat-
tice parameters are used. For strong IB corrections, an expo-
nential suppression with the lattice size is observed. How-
ever, the precision of the data is not yet sufficient to test the
coefficient of the power-law for the QED corrections. See
Fig. 17.

The isospin-breaking effects for the charm quark have
been estimated by the ETM collaboration and found to be
negligible [68,69], see Table 2.

Further results are expected in the near future. The Mainz
group have presented preliminary results on the inclusion
of isospin-breaking effects using the the ROME123 method
[90,91]. A first step toward IB correction to ahvp

μ has been
presented in [92]. This year, the QCDSF collaboration also
presented preliminary results during the APLAT 2020 con-
ference [85]. They use full lattice QCD+ QED simulations at
a single lattice spacing. They observed a positive increase of

Fig. 18 Comparison of lattice results for full contribution to the
leading-order HVP. The lattice results are extracted from [12,34,37,42–
44,67,68]. The R-ratio results are extracted from [9,10,93]. The vertical
bands correspond to the value quoted in Table 1. The later was obtained
in [8] after merging all R-ratio results and does not include any lattice
estimate

about 0.2% on ahvp
μ due to QED effects. When comparing this

value with previous determinations, it should be noted that
an unphysical value of the fine structure constant α ≈ 0.1
has been used.

2.6 Summary of the HVP contribution

A comparison of the most recent lattice results is shown in
Fig. 18, along with the more precise results based the data-
driven evaluations of the HVP. It is reassuring that results
obtained with different lattice discretizations, and therefore
affected by different systematic errors are in relative good
agreement with each other. However, some tensions, espe-
cially for the dominant light quark contribution, are still
present and need to be understood. Some methods will be
discussed in the next section.

Finally, the first sub-percent calculation has been pub-
lished this year by the BMW collaboration [12]. This result
is in tension with the R-ratio estimates and further investi-
gations, among lattice collaborations and with phenomenol-
ogy are required. Importantly, an even stronger tension is
observed for the window method discussed in Sect. 3.1.

3 Benchmark quantities for the HVP contribution

To match the precision of future experimental measurements,
the target precision for the LO HVP contribution is 0.2% and
it represents an enormous challenge for lattice simulations.
In previous sections, we have presented an overview of the
dominant sources of error common to all lattice simulations.
Since current estimates for this observable are usually dom-
inated by systematic errors, it is of major importance to per-
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form further cross-checks between collaborations to provide
evidence that lattice simulations are under control. In the next
subsections, we discuss several strategies that can be used,
either as a check among lattice calculations (by designing
observables less sensible to some specific source of error),
or directly with phenomenology.

3.1 The “window method”

The window method has been presented for the first time
in Ref. [37] as a tool to improve the accuracy of the HVP
by supplanting the dispersive results based on R-ratio mea-
surements [9–11] by lattice inputs in a time-region where
the lattice data turn out to be more precise. The idea is that
the lattice calculation is much easier if one discards very
short Euclidean times (< 0.3 fm), which are affected by
large discretization effects, and the long distance contribution
(> 1 fm), which is noisy and requires significant finite-size
corrections. An additional feature of this method is that the
chiral extrapolation is much smoother due to the suppression
of the tail of the integrand.

In this method, the integrand for ahvp
μ in the TMR rep-

resentation is convoluted with a smooth window function
W (t; t0, t1) in Euclidean time

awin
μ =

(α

π

)2 ∑
t

G(t) K̃ (t)W (t; t0, t1). (22)

A convenient definition is given by

W (t; t0, t1) = Θ(t, t0,Δ) − Θ(t, t1,Δ), (23)

where Θ is a smooth step function defined by Θ(t, t ′,Δ) =[
1 + tanh[(t − t ′)/Δ]] /2. In Ref. [37], the authors have cho-

sen the parameters t0 = 0.4 fm, t1 = 1 fm and Δ = 0.15 fm.
This choice was done by minimizing the total error on ahvp

μ

when using lattice data to compute awin
μ and the R-ratio data

in the two complementary time regions.
However, such a combination (between lattice data and R-

ratio data) might appear premature. Indeed, the recent result
from the BMW collaboration [12] presents a significant dis-
crepancy with the one obtained in the dispersive approach.
In this section, rather than using the window method to pro-
vide a more accurate result, we underline the power of this
method to compare different lattice calculations and to spot
the region where the disagreement might appear.

In Sect. 2, we listed the different challenges inherent to
a sub-percent calculation of the leading order HVP. Inter-
estingly, they do not affect the same time ranges. If dis-
cretization effects are mostly important at short distances,
FSEs and the specific treatment of the tail of the integrand
become more relevant at large Euclidean times. Thus, the
window method is a useful tool to compare different lattice
calculations. The choice made in [37] has several advantages.

Fig. 19 Comparison of lattice results for the window observable in
the case of the connected contribution in the isospin symmetric limit.
The window is defined by (Δ, t0, t1) = (0.15, 0.4, 1.0). The results are
extracted from [12,37,38,42]. For Aubin et al. the two points differ by
the procedure used to perform the continuum extrapolation

First, by removing the short distance contribution, discretiza-
tion effects are suppressed and the continuum extrapolation
might be smoother. Second, the suppression of the tail not
only reduces significantly the noise at large Euclidean times
but also flattens the chiral behavior. Finally, finite-size effects
are much smaller on this quantity. However, some difficul-
ties remain: the uncertainty associated to the scale setting,
discussed in Sect. 2.2.4, is still present. The situation is even
a bit worse since the definition of the window itself depends
on the scale setting determination.

Ideally, results for this intermediate window, as well as
the complementary short ad long-distance window should be
published together with the total ahvp

μ . So far, only four col-
laborations have published results in this direction but some
preliminary results have been presented recently. The results
for the light quark contribution in the isospin limit and with
(Δ, t0, t1) = (0.15, 0.4, 1.0) are depicted in Fig. 19. In this
comparison, the R-ratio estimate is extracted from [12] by
subtracting all lattice contributions, except the light-quark-
connected one, to the phenomenological estimate based on
the R-ratio. We observe some tension between different
estimates. More importantly, a signifiant tension appears
between the R-ratio estimate and the published lattice val-
ues, with the exception of the RBC/UKQCD estimate. As
stated above, FSE are small in this time region. The main
difficulty thus lies in the scale-setting determination and the
continuum extrapolation. It is of major importance to have
better control on this observables and more lattice determi-
nations would be valuable.

For the strange-quark contribution, the results published
in [12,37,42] are in good agreement. It suggests that the
scale-setting determination is not the cause of the discrep-
ancy observed in the light-quark contribution. Concerning
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the charm quark contribution, a small tension is observed
between BMW [12] and the RBC/UKQCD [37] collabora-
tion who found awin,c

μ = 2.7(0.1) × 10−10 and awin,c
μ =

3.0(0.1)× 10−10, respectively. In addition to the light-quark
contribution, results for the quark disconnected contribution
might be valuable to understand the tension in the quark-
disconnected contribution discussed in Sect. 2.4.

To conclude, this observable is in principle much easier
to access than the full HVP contribution and a good statisti-
cal precision is easily obtained. Many sources of systematic
errors are suppressed and the main difficulty originates from
the scale-setting and the continuum extrapolation. A compar-
ison between different lattice collaborations provides a strong
consistency check, especially for the light and quark discon-
nected contributions. In particular, it is important to under-
stand the current discrepancy between some lattice results
and the R-ratio estimate.

3.2 Running of alpha

The fine structure constant is a fundamental parameter of
the Standard Model of particle physics that characterizes the
strength of the electromagnetic interaction. In the Thomson
limit (Q2 = 0), it is known with an impressive precision of
0.08 ppb [95,96]. However, at the Z-pole mass, the value of
the coupling increases by approximately 7% where half of
the correction is due to hadronic effects. As a consequence,
almost 5 order of magnitude are lost in precision:

α = 1/137.035999206(11), (24)

α(M2
Z ) = 1/127.955(10). (25)

In this running, the major source of uncertainty comes from
low-energy hadronic contributions. This important parameter
enters precision tests of the Standard Model and the relative
precision of 5 × 10−5 would be required by future colliders
[97]. It corresponds to a reduction of the error by a factor
2-3.

The effective running coupling at a scale q2 is conven-
tionally written as

α(q2) = α

1 − Δα(q2)
, (26)

where α = α(0) is fine-structure constant and Δα(−Q2) =
Δαlep(−Q2) + Δα

(5)
had(−Q2) + Δαtop(−Q2) contains the

contribution from leptons and the top quark, that can be
estimated using perturbation theory, and the non perturba-
tive hadronic vacuum polarization from the five light quarks,
Δα

(5)
had(Q

2). As for ahvp
μ , it can be estimated in a data-driven

approach from e+e− → hadron cross sections using disper-
sion relations [9,10]. As compared to Eq. (1), only the weight
function is different and, for the running coupling, the con-
tribution from high energy is much more pronounced such

that 70% of Δα
(5)
had(Q

2) comes from pQCD and contributes
to a large part of the final error.

The lattice calculation of the hadronic contribution to the
running starts with

Δα
(5)
had(Q

2) = 4παΠ̂(Q2), (27)

where the right-hand side is evaluated using Eq. (7) in the
time-momentum representation. The exact same correlation
functions as for ahvp

μ are required. Here, the main challenge
lies in the control of discretization effects that become large
as Q2 increases. Ideally, very fine lattice spacings are needed.
Then, the question is which Q2 is high enough such that a
matching with perturbation theory is under control, within
the lattice estimate uncertainty. One possibility is to use
Euclidean split technique [98] where

Δα
(5)
had(M

2
Z ) = Δα

(5)
had(−Q2

0)

+
[
Δα

(5)
had(−M2

Z ) − Δα
(5)
had(−Q2

0)
]

+
[
Δα

(5)
had(M

2
Z ) − Δα

(5)
had(−M2

Z )
]
. (28)

For Q2
0 high enough, the last two term can be computed using

perturbation theory and the first term is the lattice input.
The running coupling has been studied on the lattice for the

first time in [99,100], using twisted mass fermions. Later, the
ETM collaboration [101] published results for the running, in
the range Q2 ∈ [0−10] GeV2, that includes a chiral and con-
tinuum extrapolation to the physical point. The Mainz group
has also presented preliminary results in [102,103] with two
dynamical Wilson quarks. During last years Lattice confer-
ence, an analysis based on the CLS ensembles with 2 + 1
dynamical quarks including one ensemble at the physical
pion mass has been presented [94]. In [53] the BMW collab-
oration published results for Π̂(Q2) using staggered quarks
at the physical pion mass. A comparison between the most
recent BMW and the preliminary Mainz results is shown in
the left panel of Fig. 20.

Another observable of phenomenological interest is the
electroweak mixing (Weinberg) angle ΘW that parametrizes
the mixing between the electromagnetic and the weak inter-
actions. It defined through

sin ΘW = g′2

g2 + g′2 , (29)

where g and g′ are the SU (2)L and U (1)Y couplings. Con-
trary to α, the Weinberg angle is measured with a sub-permil
precision at the Z-pole mass and the running at low energy is
affected by hadronic uncertainties. In this case, the hadronic
part of the running is defined by [104]

Δhad sin2 ΘW (−Q2) = − e2

sin2 Θ2
W

Π̂γ Z (Q2) (30)
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Fig. 20 Preliminary results for the running of the electromagnetic cou-
pling α (right panel) and the Weinberg angle (right panel) as a function
of the space-like momentum transfert Q2. The blue line corresponds

to the preliminary Mainz result presented in Ref. [94]. The red dots
are obtained from the results published in Ref. [53]. Figure extracted
from [94]

where Π̂γ Z is the hadronic vacuum polarization mixing
between the electromagnetic current defined below Eq. (6)
and the vector part of the neutral weak current

j Zμ = jμ − sin2 ΘW

(
1

4
uγμu − 1

4
dγμd− 1

4
sγμs+ 1

4
cγμc

)
.

(31)

Compared to the phenomenological estimate, it is much eas-
ier to perform the required flavor decomposition in lattice
QCD simulations.

The electroweak mixing angle has ben studied on the lat-
tice in [94,101,103,105,106] and the results of the running
for the Mainz group is shown in the right panel of Fig. 20.

3.3 Electron g − 2

The anomalous magnetic moment of the electron has been
measured by the Harvard group with an accuracy of 0.24 ppb
[107] and present a slight tension with the SM [10]

aSM
e − aexp

e = −89(23)th(28)exp × 10−14 (32)

corresponding to about −2.5 σ . Very recently, a new mea-
surement of the fine structure constant was published [95]
with a relative accuracy of 81 parts per trillion. This new
value differs by by more than 5 standard deviations with the
previous best result [108] and leads to

aSM
e − aexp

e = +48(30) × 10−14, (33)

corresponding to a tension of +1.6 σ . Interestingly, this new
result leads to a deviation with the same sign as compared to

Fig. 21 Integrand for the lepton (� = e, μτ ) anomaly in the time-
momentum representation in Eq. (9) by the ETM collaboration. The
integrand is normalized for convenience. Extracted from [64]

the muon anomaly. In the case of the electron, the experimen-
tal determination based on atomic interferometry, is com-
pletely different from the one used for the muon anomaly.
The phenomenology determination is, however, based on the
same data set and can be computed from the e+e− →hadrons
cross sections via dispersive methods. On the lattice, only the
QED weight function differs through the lepton mass and ae
can be easily obtained as a side results of the (g− 2)μ, using
the same set of correlation functions. The integrand, in the
time momentum representation, and for lepton= e, μ, τ is
depicted in Fig. 21. Results for individual leptons have been
presented in Refs [53,109,110].
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Recently, the ETM collaboration proposed to study the
following ratio [64]

Re/μ =
(
mμ

me

)2 ahvp
e

ahvp
μ

, (34)

constructed from the anomalous magnetic moment of the
electron and the muon. Because the integrand of the two
lightest leptons are similar, this ratio can be used to reduce
the statistical and systematic errors. In particular, it has been
pointed out that the error coming from the scale setting (see
the discussion in Sect. 2.2.4) is strongly reduced as compared
to ahvp

μ . Finite-size effects also largely compensate as well
as renormalization factors. Finally, the chiral extrapolation is
also much milder. In [64], the authors observed a reduction
of the error by a factor close to 4 for individual ensembles.

In Ref. [64], the ETM collaboration has published a lat-
tice determination of the ratio (34), including the domi-
nant isospin-breaking corrections. Their result at the physical
point reads

Re/μ = 1.1456(63)stat(54)stat. (35)

This result is in good agreement with the estimate obtained
from the dispersive analyses based on e+e− → hadron cross
sections [10] and presents a tension of about 2.7 standard
deviation with the experimental result [1,107,111]. However,
on the phenomenological side, this tension is mostly due to
QED uncertainties and not to hadronic ones.

From a purely lattice point of view, this observable might
be interesting to compare the results obtained by different
lattice collaborations.

3.4 Time moments

The time moment of order n has been defined in Eq. (10)
and can be used to determine the hadronic vacuum polariza-
tion contribution using Padé approximants. This is actually
the strategy followed by the Fermilab-HQPCD-MILC col-
laboration, where the authors use two series of approximants
[n, n] and [n, n − 1] [33]. It has been proven that the true
result lies between them, such that only a few terms of the
series are required at a given precision.

The time moments can be computed using the exact same
set of lattice data and results that have been presented by
various collaborations. As such, they played an important
role in the past years when comparing results from different
lattice collaborations.

As for the time momentum representation, one can use the
flavor or isospin decompositions of the vector correlator. The
statistical and systematic errors of the time moments can be
treated in a very similar fashion as for the HVP. The integrand
for the first two moment (n = 1, 2) is depicted in Fig. 22
and they probe larger Euclidean times as n increases. It is

Fig. 22 Integrand for the first two time-moment as a function of the
Euclidean time. The electromagnetic current correlator is obtained using
a phenomenological description of the e+e− data and dispersion rela-
tions, as explained in [112]. The figure is extracted from Ref. [112]

interesting to note that the kernel function K̃ , used in lattice
calculations of the HVP in Eq. (9), behaves as K̃ ∼ π2

9 m2
μt

4

at short distances t � m−1
μ and as K̃ ∼ 2π2t2 at long

distances t � m−1
μ [34]. Thus, the second moment probes

much longer distances and is even more subject to the noise
problem discussed in Sect. 2.2. It is also more affected by
FSEs or by the finite time-extent of the lattice. On the other
hand, the integrand of the first moment is closer to the one for
the HVP. It indeed behaves as the HVP at short distances and
is also peaked at t ≈ 1 fm. Finally, one notices that, contrary
to aμ, the time moments are dimensionful quantities.

Because of those difficulties, the time moments are, to
some extent, even more challenging to evaluate that the HVP
itself and makes them less useful for a direct comparison
between lattice results.

Results for the first moment, restricted to the light quark
contribution in the isospin limit, have been published by sev-
eral collaborations [38,44,59,110,112] and, as can be seen
in Fig. 23, turn out to be in good agreement. Results for the
second moment have also been presented by various collab-
orations [44,59,112]. In this case, there is however a slight
tension between the FHM and BMW collaborations. It might
underline the difficulty to get a good description of the corre-
lator at large Euclidean times, in the treatment of FSEs or in
the scale setting determination that affect this dimensionful
observable.

4 The hadronic light-by-light contribution

The hadronic light-by-light contribution enters at order α3

in the perturbative expansion and is expected to be much
smaller than the LO-HVP contribution. The relevant dia-
gram is depicted in the right panel of Fig. 1 and the current
best-estimate, extracted from [8], is given in Table 1. If this
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Fig. 23 Comparison of lattice results for the light-quark contribution
(in the isospin limit) to the first two time moments defined in Eq. (10).
The results are extracted from [37,38,44,68,110,112]

contribution is about 70 times smaller than the LO-HVP, its
evaluation is also more challenging. Fortunately, an overall
precision of 10% would already suffice to match the future
experimental precision on aμ.

Interestingly, this contribution is two times larger than the
current precision on aμ and it should be about 3 times larger
to explain the discrepancy in the muon (g − 2) by itself.
The recent lattice results by the RBC/UKQCD and Mainz
collaborations, as well as the dispersive result, suggest that
this is very unlikely.

In the past, this contribution was estimated using model
estimates [13,14] where systematic errors are difficult to
estimate and the Glasgow consensus [15] reads ahlbl

μ =
(102 ± 39) × 10−11. One of the main messages is that pseu-
doscalar exchanges are by far the dominant contribution.
There are currently two independent approaches that aim to
provide a model-independent determination of this contribu-
tion.

The first method consists in calculating the full HLbL dia-
gram using ab-initio lattice calculations with all errors under
control. Recently, two collaborations have published results
in this direction: the RBC/UKQCD collaboration and the
Mainz group. Although they use slightly different strategies,
they both rely on the numerical evaluation of a four-point
correlation function in position space

Πμνλσ (q1, q2, q3) =
∫

d4x1d4x2d4x3e
−i(q1x1+q2x2+q3x3)

×〈Jμ(x1)Jν(x2)Jλ(x3)Jσ (0)〉 (36)

where Jμ is the hadronic part of the electromagnetic cur-
rent defined below Eq. (6). This method will be discussed in
Sect. 4.1.

The second method to tackle this challenge is to con-
sider contributions from individual intermediate states. This
is done in a systematic and rigorous way in the dispersive
approach [16–19]. This data-driven method has been suc-
cessfully applied to the vector 2-point correlation function
to estimate the LO-HVP contribution but the situation is
much more difficult for the HLbL due to the complicated ana-
lytic structure of the 4pt correlation function. Fast progress
has been achieved in recent years and an overview of this
approach can be found in [8]. Fortunately, it is expected
that, among all possible intermediate states, the largest con-
tributions are given by a handful of states: the light pseu-
doscalar mesons π0, η and η′. All the non-perturbative infor-
mation is encoded in the (space-like) transition form factors
that describe the interaction of the meson with two virtual
photons. However, the experimental data, needed for this
approach, are often missing. Lattice QCD can provide valu-
able information, especially for the dominant pseudoscalar
pole contributions. This will be discussed in Sects. 4.2 and
4.3.

4.1 Direct lattice calculation

The first lattice calculation of the HLbL diagram was per-
formed by the RBC/UKQCD collaboration in [113], where
the authors focused on the connected contribution only. The
form factor F2 was computed at different values of Q2 using
a non-perturbative treatment of QED and a pion mass of
329 MeV. The large statistical error and the extrapolation
to Q2 = 0 prevented them from a comparison with phe-
nomenology. Later, in [114], several major improvements in
methodology were presented, first to reduce the statistical
error and the numerical cost and, second, to avoid the need
for an extrapolation to Q2 = 0 by introducing the moment
method. For the first time, a very clear signal was obtained
for the connected contribution with a pion mass of 171 MeV,
close to the physical one.

All recent calculations consist in evaluating a four-point
correlation function in QCD and in position space. The latter
is summed with a QED weight function that represents the
muon and quark lines in Fig. 1, such that the Pauli form factor
is directly obtained at vanishing momentum, F2(0) = aμ. No
extrapolation q → 0 is required. So far, only two collabora-
tions have presented results and the difference in their setups
mostly lies in the determination of the QED weight function:
either in finite volume for the RBC/UKQCD collaboration or
in the continuum and infinite volume for the Mainz Group.
The RBC/UKQCD collaboration also presented preliminary
results for the second case [115].
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Fig. 24 The five classes of diagrams for the HLbL calculation. The
first two diagrams are dominant one. The other three diagrams vanish
in the SU(3) f limit

The four-point correlation function in Eq. (36) involves
five different classes of Wick contractions that are depicted
in Fig. 24. The quark disconnected contributions are conve-
niently called (2+2), (3+1), (2+1+1) and (1+1+1+1),
depending on the number of vertices in each quark loop. The
fully connected and 2+2 disconnected diagrams, that does not
vanish in the SU(3) f limit (upper diagrams of Fig. 24) are
expected to be dominant. In [116], based on π0 exchange, the
authors anticipated that the disconnected contribution might
be large to cancel a part of the connected contribution. This
has been confirmed numerically by both the RBC/UKQCD
and the Mainz collaborations. The other, sub-dominant dia-
grams vanish exactly in the SU(3) f symmetry limit and are
suppressed by a factor 1/Nn

c where n is the number of single
closed loops. Although their contribution is expected to be
smaller than the target precision, an upper bound on their size
would be valuable to assess systematic errors.

To reach the target precision of 10% on the hadronic light-
by-light contribution, the main challenges consist in reducing
the statistical error as well as controlling the main sources of
systematic errors, namely the finite-volume effects and the
extrapolation to the physical point. The light-quark contribu-
tion is by far the dominant one, the strange quark contribution
being further suppressed by its electric charge. The charm
quark can be safely neglected. Reaching a high statistical
precision is made difficult by the large cancellation between
the connected and disconnected contributions. The numeri-
cal implementation used so far leads to contributions that are
statistically uncorrelated and little is gained when taking the
difference such that the relative precision gets worse. Finally,
finite-size effects are found to be large even on big lattices.
In this case, the situation differs significantly when one uses
QEDL or QED∞. Finally, the evaluation of the QED weight
function is by itself difficult, as no fully-analytical expres-
sion is known and the cost associated to its evaluation is not
necessarily negligible.

4.1.1 The Mainz approach

The Mainz group starts with the master formula

ahlbl
μ = mμe6

3

∫
d4y

∫
d4xL̄[ρ,σ ];μνλ(x, y) i�̂ρ;μνλσ (x, y),

(37)

with mμ the muon mass, L̄ a QED weight function that
describes the muon and photon lines in Fig. 1, and i�̂ is a
spatial moment of the Euclidean four-point function in QCD,

i�̂ρ;μνλσ (x, y) = −
∫

d4z zρ �̃μνσλ(x, y, z), (38)

�̃μνσλ(x, y, z) ≡ 〈 jμ(x) jν(y) jσ (z) jλ(0)〉QCD . (39)

The QED weight function L̄ has been computed semi-
analytically in the continuum and infinite volume, in position
space. It is expressed in terms of a few scalar weight functions
that can be easily evaluated numerically, on the fly, during
the contractions of the quark propagators. First results and
checks of the kernel have been presented in previous confer-
ences and workshops [117–119]. A theoretical advantage of
treating QED in infinite volume is that no power-law finite-
volume effect appears. Such terms are expected to arise in the
QEDL formulation (see the next section), due to the massless
photon propagators. Instead, finite-volume errors are expo-
nentially suppressed with the lattice size.

Equation (37) requires three sums over the whole lat-
tice volume and an exact summation would be prohibitively
expensive. In the numerical setup presented by the Mainz
group, only two sums over x and z are performed explicitly
on the lattice. This is possible using propagators with sources
at the origin and y since the contractions involve only O(V )
operations, because the weight factor factorizes as a function
of (x, y) (the QED kernel) times zρ (see Eq. (38)). After con-
tracting all the Lorentz indices, the result depends only the
norm of the vector y (up to discretization effect at finite lattice
spacing) and the integrand is sampled reliably by choosing a
few values of |y|. The shape of the integrand as a function of
|y| and for the connected contribution is shown in Fig. 25.

The two main challenges associated with this calculation
are the control of statistical errors (especially for the discon-
nected contribution) and the correction for finite-size effects
that are large even for lattices with mπ L > 4. Various tech-
niques have been proposed to deal with those challenges.

Concerning statistical errors, as first noted in [115], the
weight function in Eq. (37) is not unique. This is a conse-
quence of the conservation of the vector current in the contin-
uum limit (in particular any function that depends only on the
variable x or y can be added to the kernel). Such subtractions
are equivalent, in the continuum and infinite-volume limits,
but provide different lattice estimators that can be affected
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Fig. 25 Integrand for the quark-connected contribution for two ensem-
bles at the SU(3) f symmetric point with mπ = mK ≈ 420 MeV (H200
withmπ L = 4.4 and N202 withmπ L = 6.4) for the Mainz group [120]

by different statistical and systematic errors. The following
subtraction

L̄(Λ)
[ρ,σ ];μνλ

(x, y) = L̄[ρ,σ ];μνλ(x, y)

−∂(x)
μ (xαe

−Λm2
μx

2/2)L̄[ρ,σ ];ανλ(0, y)

−∂(y)
ν (yαe

−Λm2
μy

2/2)L̄[ρ,σ ];μαλ(x, 0),

(40)

where Λ is an arbitrary dimensionless parameter reduces the
long-distance contribution and the discretization effects that
arise with the standard kernel. Using the un-subtracted ker-
nel, the signal is lost at very short distance, below 1 fm.

As a second strategy to address the noise problem at long
distance, the Mainz group has considered two different esti-
mators for the connected-quark contribution. A direct imple-
mentation of the master formula in Eq. (37) is rather expen-
sive and requires the use of many sequential propagators.
Fortunately, the integral can be re-arranged in such a way
that only two inversions are required for each value of |y|.
Keeping all propagators in memory, it allows for a significant
reduction of the noise [120].

Finally, assuming a Vector Meson Dominance (VMD)
model, with parameters obtained from a dedicated lattice
calculation of the pion transition form factor (see Sect. 4.2),
the pion-pole contribution has been evaluated both in finite
and infinite volume [121,122]. First, the light pseudoscalar
is expected to give the dominant contribution at long dis-
tance and the noisy lattice data can eventually be replaced
by the pion-pole contribution only. In Fig. 26 the lattice data
are used below the cut and, above the cut, the pion-pole cal-
culation is used. As expected, one observes a plateau if the
cut is such that |y|cut > 2.5 fm. Second, this method allows
to correct for the dominant source of finite-size effect that

Fig. 26 Value of the connected contribution using the long-distance
correction prescription described in the text: below |y|cut the lattice data
are used. Above the cut, the prediction from the pion-pole contribution
is used. Extracted from [120]

Fig. 27 Notations used by the RBC/UKQCD collaboration for the
quark-connected contribution. The origin is set at w = x+y

2 and
r = x − y. Figure extracted from [123]

arises from the pion and a comparison in different volumes
is shown on Fig. 26.

4.1.2 RBC/UKQCD: QED in finite volume

In the moment method [21,114,123], the RBC/UKQCD col-
laboration starts with the following expression

ahlbl
μ

2mμ

u(0, s′)Σ u(0, s)

= 1

2

∑
r,z,xop

xop × iu(0, s′) FC
( r

2
,− r

2
, z, xop

)
u(0, s),

(41)

where Σi = 1
4i εi jk[γ j , γk]. The notations are explained in

Fig. 27 and r = x − y. The amplitude FC
ν

(
x, y, z, xop

)
is

obtained from the average of the function Fν

(
x, y, z, xop

)
over the three cyclic permutations of the positions x , y and
z with
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Fν

(
x, y, z, xop

) = (−ie)6n

×Gρ,σ,κ (x, y, z; xsnk, xsrc)HC
ρ,σ,κ,ν(x, y, z, xop). (42)

where i4HC
ρ,σ,κ,ν(x, y, z, xop) represents the hadronic part

of the diagram that is expressed in terms of four quark prop-
agators and i3Gρ,σ,κ (x, y, z; xsnk, xsrc) is the QED weight
function expressed in terms of muon and photon propaga-
tors. The later includes a sum over the variables x ′, y′ and
z′. The QED part is evaluated on the same finite lattice and
the spatial zero modes of the photons are explicitly removed.
This procedure is known as QEDL [82]. As compared to
the Mainz approach, one expects power-law, finite-volume
effects and an extrapolation L → ∞ is eventually required.
In this setup, the numerical cost associated with the evalua-
tion of the QED weight function is also not negligible.

Similarly to the Mainz approach, due to the huge compu-
tational cost, all spacetime summations cannot be performed
exactly over the whole lattice. The summation over r = x−y
is done stochastically with a distribution chosen such that
points that contribute most to the signal are more frequent.
As can be seen in Fig. 28, the dominant contribution indeed
comes from distances less than 1 fm. The two propagators,
with sources at x and y, are contracted for all sink values
such that the sums over xop and z are performed exactly over
the whole lattice.

For the connected contribution, the hadronic part is explic-
itly given by

HC
ρ,σ,κ,ν(x, y, z, xop) = −

∑
q=u,d,s

(eq
e

)4 ×
〈
tr
[
γρSq(x, z)

·γκ Sq(z, y)γσ Sq
(
y, xop

)
γνSq

(
xop, x

)]〉
QCD

. (43)

where Sq is the propagator for a quark of flavor q and elec-
tric charge eq . To reduce the noise, the Ward identity on the
current insertion xop is enforced exactly, on each gauge con-
figuration. This is done by inserting the external photon at all
possible locations on the quark loop on each gauge config-
uration. This provides a significant increase in the statistical
precision.

The moment method can be applied to the disconnected
contribution as well, in this case the hadronic part reads

HD
ρ,σ,κ,ν(x, y, z, xop) =

〈1

2
Πν,κ(xop, z)

× [
Πρ,σ (x, y) − Π

avg
ρ,σ (x, y)

]〉
QCD

(44)

where

Πρ,σ (x, y) = −
∑
q

(eq
e

)2
Tr

[
γρSq(x, y)γσ Sq(y, x)

]
.

(45)

To evaluate this contribution, if M propagators can be kept
in memory, with different source positions, then M(M −

Fig. 28 Cumulative contributions to the muon anomaly for the con-
nected (upper) and leading disconnected (lower) diagrams in the QEDF
formalism. Here r is the distance between the two sampled currents in
the hadronic loop (the other two currents are summed exactly)

1)/2 combination of points (x, y) can be used to evaluate
the integrand. For large values of M , it leads to a significant
reduction of the noise.

To study the finite-size effects of the form 1/Ln with
n ≥ 2, the RBC/UKQCD collaboration has performed simu-
lations with different volumes: such infinite-volume extrap-
olations are shown in Fig. 31.

4.1.3 The RBC/UKQCD approach in infinite volume

In Ref. [115], the RBC/UKQCD collaboration has presented
first results using QED in infinite volume. This approach is
more similar to the one followed by the Mainz group. Here,
one still starts from Eq. (41), but the weight function G is
now evaluated in the continuum and infinite-volume limits.
The 12-dimensional integration is reduced to a 4-dimensional
integration by analytic calculations. The resulting expres-
sion is then integrated numerically. To reduce the associated
numerical cost, the weight function is pre-computed on a
grid of points and an approximation is obtained by interpo-
lating the computed values. A subtraction of the QED weight
function has been used to reduce the noise.

Preliminary results have been presented during workshops
and conferences [124,125] and are shown in Fig. 29. A sim-
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Fig. 29 Preliminary results for the RBC/UKQCD collaboration in the
QED∞ setup. The results, obtained for a pion mass of mπ = 142MeV,
include both the connected and the dominant disconnected contribution.
At short distances, the lattice data are used. At long distance, the pion-
pole contribution is used (assuming an LMD model). One expects a
plateau a sufficiently large value of Rmax

ilar strategy to the Mainz group is used: at short distance,
the lattice data are used and at long distance, the prediction
from the pion-pole contribution is used. Using a lattice with
a = 0.2 fm and L = 4.8 fm, a plateau at Rmax ≈ 2.5 fm
is observed leading to ahlbl

μ = 11.40(1.27)stat × 10−10. The
error is statistical only and 60% of the results comes from
actual lattice data. A more systematic study of FSE and an
extrapolation to the physical point is still required.

4.1.4 Cross check

Both the RBC/UKQCD and the Mainz collaborations have
tested their method and lattice setup in pure QED to repro-
duce the well-known lepton-loop contribution. This contribu-
tion enters at order α3 in the QED contribution and is known
exactly [126]. The results for both collaboration are shown
in Fig. 30. In this extrapolation, finite-size effects are taken
into account by both collaborations.

4.1.5 Results for ahlbl
μ

This year, the RBC/UKQCD has published the first ab-initio
calculation of the the hadronic light-by-light scattering con-
tribution to the anomalous magnetic moment of the muon, at
the physical pion mass, with a continuum extrapolation and
an estimate of finite-size effects corrections [21]. The study
is based on Domain-Wall fermions at the physical point using
two sets of ensembles generated with different gauge actions.

Fig. 30 QED light-by-light scattering contribution to the muon
anomaly. The top panel if the result from the RBC collaboration using
the method described in Sect. 4.1.2. Different colors correspond to dif-
ferent lattice spacings and the cross is the extrapolated value. The bottom
panel shows the Mainz results using the method described in Sect. 4.1.1.
The two colors correspond to two different discretizations of the vector
current, the dashed lines does not include the FSE correction

Simulations include the fully connected contribution for the
light quark as well as the leading 2 + 2 quark disconnected
contribution with both the light and the strange quarks. The
latter contributes only at the level of 5% of the disconnected
contribution.

The result is obtained using the QEDL formulation
described above. A part of the results, on a single ensemble,
have been published earlier in [123]. This update includes
several lattice spacings, as well as different volumes. Two
ensembles using the same action are used to perform the
continuum extrapolation and three (two) other ensembles
are used to constrain the infinite-volume extrapolation of the
quark connected (disconnected) contribution. The value at
the physical point reads

atot
μ = 7.87(3.06)stat(1.77)syst × 10−10 , (46)

where the total error is dominated by statistics. It corresponds
to a precision of about 45%. The systematic error is domi-
nated by finite-size effects and by the continuum extrapo-
lation, see Fig. 31. A large cancellation between the con-
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nected and leading disconnected contributions is observed,
as expected. In fact the two contributions taken individually
are known with much better relative precision

aconn
μ = 23.76(3.96)stat(4.88)syst × 10−10 , (47)

adisc
μ = −16.45(2.13)stat(3.99)syst × 10−10 . (48)

The result (46) is compatible with the most precise determi-
nation based on the dispersive approach [93,127–135] (see
Table 1), although with larger error-bars. It demonstrates the
feasibility of a lattice QCD calculation with controlled sta-
tistical and systematic errors. Further studies, in particular
to better control the extrapolation to the physical point, are
needed to reach 10% level accuracy.

This year, the Mainz group published their first result [120]
for the hadronic light-by-light contribution to the anoma-
lous magnetic moment of the muon, in the continuum limit,
but at the SU (3)-flavor symmetric point with mπ = mK ≈
400 MeV. The results are obtained with N f = 2 + 1 Wilson
fermions and several ensembles have been used to study the
main sources of systematic errors : FSEs and discretization
effects. The restriction to the SU (3) f point is motivated by
the moderate computational cost as compared to the physi-
cal pion mass ensembles and the reduced number of discon-
nected diagrams that need to be evaluated. In this limit, only
the 2+2 disconnected contribution survives since other dia-
grams with at least one single loop vanish due to the charge
factors. The result in the continuum limit reads

atot
μ = 65.4(4.9)stat(6.6)syst × 10−11 . (49)

and corresponds to a precision better than 15%. The extrap-
olation to the continuum limit is shown in Fig. 32 and, as for
the RBC/UKQCD collaboration, the statistical correlations
between the connected and disconnected contributions are
found to be very small.

Subtracting from Eq. (49) their lattice result for the pion-
pole contribution discussed in Sect. 4.2, and assuming that
the remaining part has a mild chiral dependance, the Mainz
group obtains a prediction at the physical pion mass

a
hlbl,SU (3) f
μ − a

hlbl,π0,SU (3) f
μ + ahlbl,π0,phys

μ

= (104.1 ± 9.1) × 10−11. (50)

Using a slightly more sophisticated method to correct for the
quark-mass effects, that originate from non pion-pole contri-
butions, the authors associate an additional error of 20% to
this result. Additional ensembles are required to perform a
more careful chiral extrapolation and first results have been
presented during workshops and conferences [122,136]. This
value is higher than (46) but compatible within error bars. It
is also in good agreement with the most recent dispersive
results [93,127–135].

Fig. 31 Infinite volume extrapolation for the RBC/UKQCD collab-
oration using the QEDL formalism. Connected (top), (2+2) discon-
nected (middle), and total (bottom). The continuum limit (purple line)
is obtained from the two ensembles 48I and 64I sharing the same action.
The other ensemble are used to performed the infinite volume extrapo-
lation only. Figure extracted from [21]

4.1.6 Sub-dominant disconnected contributions

The RBC/UKQCD collaboration also published results for
the first sub-leading diagram [21] (third diagram in Fig. 24).
The latter is evaluated on a single ensemble using the QED in
infinite-volume setup. In practice, the whole diagram is not
computed and only the expected dominant Wick contraction
is included. Above 1 fm the contribution is consistent with
zero and this result is used to set a bound of the neglected
diagrams : |ahlbl;3+1

μ | < 0.5 × 10−10.
The Mainz group has presented preliminary results for all

sub-dominant disconnected contributions [137]. The study is

123



Eur. Phys. J. A (2021) 57 :116 Page 23 of 31 116

Fig. 32 Combined continuum-extrapolation analysis for the connected
(black) and disconnected (red) data. The purple cross represents the
addition of the continuum-extrapolated results for the connected and
disconnected contributions. Figure extracted from [120]

performed on ensembles with pion masses down to 220 MeV
(Fig. 33). The signal is lost at short distances but it provides
important upper bounds on the amplitude of the contribu-
tions: they appear to be negligible at the level of precision
required by future experiments and they confirm the obser-
vation made by the RBC/UKQCD collaboration on the 3+1
topology. A more systematic study, that includes a proper
continuum and chiral extrapolation, as well as an estimate
of the FSE correction, would be welcome to confirm this
observation.

4.2 The pseudoscalar-pole contributions

In the dispersive approach to the HLbL contribution to te
muon g − 2, the dominant contribution is given by the
light pseudoscalar-pole contributions, namely the pion, the η

and the η′. According to recent estimates [8,127], the pion-
pole contributes roughly two times more than the η- and
η′-pole together. Furthermore, the two singlet mesons have
a comparable contribution in magnitude and are therefore
not negligible. In [8], the best estimate for the HLbL con-
tribution to the muon (g − 2) is ahlbl

μ = 92(19) × 10−11

while the pseudoscalar-pole contribution itself is ahlbl,ps
μ =

93.8(4.0) × 10−11 and large cancellations are observed for
the remaining, smaller, contributions. Thus, in parallel to the
direct lattice calculation of the HLbL contribution, a first-
principle determination of the light pseudoscalar-pole con-
tribution is an important challenge for lattice QCD. In addi-
tion, this calculation provides valuable information for the
direct lattice calculation presented in the previous section.
It can be used to reduce significantly the statistical error
but also to estimate the dominant source of systematic error.
See Sect. 4.1.1.

Fig. 33 Integrated value for the sub-dominant contributions to ahlbl
μ as

a function of the integration range. For the (3 + 1) topology [21] and
the (2 + 1 + 1) and (1 + 1 + 1 + 1) topologies [137]

The lattice calculation of the pion-pole contribution is
based on the definition of the pseudoscalar-pole contribu-
tion of Ref. [138] and the result is obtained as a convolution
integral between some QED weight functions and a prod-
uct of two transition form factors (TFF) as shown in Fig. 34.
The formula involves only space-like momenta and the dom-
inant part of the signal come from virtualities below 2 GeV2.
Those two points make lattice QCD an excellent candidate
for a first-principle determination.

The pion-pole contribution to the HLbL diagram has been
computed in [72,139] with a precision of 6% and previous
lattice studies have focused on the normalization of the TFF
[140]. With the aim of a 10% precision on the full HLbL
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Fig. 34 Pseudoscalar-pole
contribution to hadronic
light-by-light scattering in the
muon g − 2. The blobs on the
represent the T → γ ∗γ ∗
transition form factors with
P = π0, η, η′

amplitude, a precision of 20% on the η and η′ might already
suffice. In this case, the lattice calculation is more challenging
due to the mixing between the two states. There is currently
no first-principle determination of the TFF but first prelimi-
nary results have been presented by the ETM collaboration
[141]. Since experimental data are very sparse and not avail-
able in the kinematical range of interest, in particular for
the doubly-virtual form factor, a first, even imprecise, lattice
calculation would be extremely valuable.

In the next subsections, I start with a brief description of
the methodology used to compute the pseudoscalar transi-
tion form factors. Then I present the state of the art of such
calculations before concluding on possible future directions.

4.2.1 Methodology

In Minkowski space-time, the pion transition form factor is
given by the following matrix element

Mμν(p, q1) = i
∫

d4x eiq1·x 〈Ω|T {Jμ(x)Jν(0)}|π0(p)〉
= εμναβ qα

1 qβ
2 Fπ0γ ∗γ ∗(q2

1 , q2
2 ) , (51)

where p = q1 + q2 and εμναβ is the fully antisymmetric
tensor with ε01234 = +1. In Ref. [72,139] the authors have
computed the following three-point correlation fonction

C (3)
μν (τ, tπ )

= a6
∑
x,z

〈
Jμ(z, ti )Jν(0, t f )P

†(x, t0)
〉
eip x e−iq1z (52)

where τ = ti − t f is the time separation between the two
vector currents and tπ = min(t f − t0, ti − t0) is the minimal
time separation between the pion interpolating operator and
the two vector currents. To project onto the pion state, one
can define the amplitude

Ãμν(τ ) ≡ lim
tπ→+∞ eEπ (t f −t0)C (3)

μν (τ, tπ ) , (53)

from which the matrix element of interest can be extracted
[142,143]

ME
μν = 2Eπ

Zπ

∫ ∞

−∞
dτ eω1τ Ãμν(τ ). (54)

In this equation, Eπ is the pion energy and Zπ = 〈0|P(0)|π〉
is the overlap of the pseudoscalar operator with the pion state.
The free parameter ω1 allows to scan different photon virtu-

alities through the relation

q2
1 = ω2

1 − q 2
1

q2
2 = (Eπ − ω1)

2 − (p − q1)
2

(55)

with

q1 = 2π

L
n , n ∈ Z

3, (56)

and L the spatial extent of the lattice. Using several values of
the pion momenta p and photon virtuality n, it is possible to
scan a dense region in the (Q2

1, Q
2
2) plane, especially for large

volumes. It should be noted that Eq. (54) is valid only below
the threshold s0 = 4m2

π (assuming the rho meson is heavier).
For the muon g− 2, this limitation is of little relevance since
we are interested in space-like virtualities. In practice, when
using Eq. (54), one is confronted to similar problems as for
the HVP: first, the integration range is limited by the finite
time extent of the lattice and second, the noise over signal
increases rapidly at large τ and a careful treatment of the tail
is required.

4.2.2 Results for the pion-pole contribution

A first feasibility study was presented in [144]. The results
are based on CP-PACS gauge configurations using 2 + 1
dynamical flavors of clover fermions at a single lattice spac-
ing a−1 ≈ 2.25 GeV and with a heavy pion mass Mπ =
725 MeV. The authors were able to describe their lattice data
for the doubly-virtual transition form factor assuming a sim-
ple vector-meson dominance (VMD) model with a pole mass
approximately equal to the corresponding rho mass.

In a later study [145], the pion transition form factor was
computed at a single lattice spacing a ≈ 0.12 fm and for pion
masses in the range [830–310] MeV, using gauge configu-
rations from the Hadron Spectrum Collaboration. The later
are based on anisotropic clover lattices with 2 + 1 dynam-
ical quarks. In the single-virtual case, the study supports
the validity of the vector-meson dominance model. In the
doubly-virtual case, the data suggest that the vector-meson
dominance model does not work very well.

In Refs. [72,139], a first systematic study of the TFF,
with a proper continuum and chiral extrapolation, as well
as an estimate of the pion-pole contribution to the HLbL
diagram, was published. The TFF was computed for sev-
eral values of Q2

1 and Q2
2 to cover the full Euclidean region,

below 4 GeV2 in the (Q2
1, Q

2
2) plane, relevant for the g − 2.

The authors used non-perturbatively O(a)-improved Wilson
fermions with N f = 2 + 1 dynamical quarks. Four lattice
spacings in the range [0.5 − 0.9] fm and two lattice dis-
cretizations of the vector curent, that differ by O(a2) lattice
artifacts, were used to perform the continuum extrapolation.
Several pion masses, down to 200 MeV allow an extrapola-
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tion to the physical pion mass. Finite-size effects have been
found to be negligible compared to the statistical precision
and both the connected and the disconnected contributions
have been included; the later contributes at the level of 1%,
and is a sub-leading source of error in this calculation.

The extrapolation to the physical point was performed
using a modified z-expansion, which satisfies the kinematical
and short-distances contraints,

P(Q2
1, Q

2
2) Fπ0γ ∗γ ∗(−Q2

1,−Q2
2)

=
N∑

n,m=0

cnm

(
zn1 − (−1)N+n+1 n

N + 1
zN+1

1

)

(
zm2 − (−1)N+m+1 m

N + 1
zN+1

2

)
. (57)

with

zk =
√
tc + Q2

k − √
tc − t0√

tc + Q2
k + √

tc − t0
, k = 1, 2, (58)

and tc = 4m2
π . Here, the free parameter t0 was chosen to

reduce the maximum value of |zk | in the range [0, Q2
max].

The imaginary part of the TFF behaves as (q2 − tc)3/2 near
threshold (P-wave) and this contraint has been implemented
in Eq. (57) by imposing [146]
[

dFπ0γ ∗γ ∗

dzk

]

zk=−1
= 0, k = 1, 2. (59)

The function P(Q2
1, Q

2
2) is an arbitrary analytical function.

The choice

P(Q2
1, Q

2
2) = 1 + Q2

1 + Q2
2

M2
V

, (60)

where MV = 775 MeV is the vector meson mass ensures that
the TFF has the correct short-distance behavior, as predicted
by the Brodsky–Lepage scaling, in the single-virtual case
and by the OPE in the double-virtual case [147–151]. At
finite value of N , the TFF decreases asymptotically as 1/Q2

in all directions in the (Q2
1, Q

2
2) plane. The advantage of

this approach is that it is systematically improvable as more
precise data become available.

In practice, the value N = 3 was used and was sufficient
to describe the TFF in the whole kinematic range. The final
result was obtained through a global fit over 13 ensembles and
the parameters cnm were expanded to linear order in a2 and
m2

π , to account for discretization effects. The results for two
specific kinematics are shown in Fig. 35. The lattice results
are in good agreement with the experimental data in the sin-
gle virtual case. In the doubly-virtual case, no experimental
data exist, and the results are in good agreement with other
determination based on dispersion relations [129,152,153]
and Canterbury approximants [127].

Using the parametrization of the TFF in the continuum
limit and at the physical pion mass, one can estimate the pion-
pole contribution to the HLbL. The formalism was derived
in [154] and the result reads

aHLbL;π0

μ = (59.7 ± 3.4 ± 0.9 ± 0.5) × 10−11, (61)

where the first error is statistical, the second is the systematic
error associated with the parametrization. This corresponds
to a relative precision of 6%. In fact, this purely lattice result
can be further improved if the normalization of the TFF is
constrained by the experimental result [155]

aHLbL;π0

μ = (62.3 ± 2.0 ± 0.9 ± 0.5) × 10−11, (62)

Both results are in very good agreement with other deter-
minations based on a dispersive analysis aHLbL;π0

μ =
63.0+2.7

−2.1 × 10−11 [129,152,153] and Canterbury approxi-

mants aHLbL;π0

μ = 63.6(2.7)×10−11 [156,157], with a com-
parable precision.

4.2.3 The chiral anomaly

An important cross-check of the lattice calculations is the
normalization of the TFF. In the chiral limit, the normal-
ization of the transition form factor is given by [158,159]
Fπ0γ ∗γ ∗(0, 0) = 1

4π2F
where F the pion decay constant in

the chiral limit. Away from the chiral limit, corrections have
been computed up to NNLO in ChiPT [160–162]. This nor-
malization was measured by the PrimEx-II experiment with
a precision of 0.8% and it translates to Γ (π0 → γ γ ) =
7.790(56)stat(109)syst eV [163].

In [140], the authors have studied the two-photon decay
on the lattice by computing the transition form factors at low
virtualities using a single lattice spacing. Large FSE correc-
tions were required and their final result reads Γπ0→γ γ =
7.83(31)(49) eV, compatible with the measured value. In
[145], the authors found Γπ0→γ γ = 8.7(1.4) eV, where the
error is statistical only. Again, this study is performed at
a single lattice spacing and heavy pion masses were used
to perform the chiral extrapolation. Finally, in [72], the
authors performed a full continuum and chiral extrapola-
tion to the physical point and they quote Fπ0γ ∗γ ∗(0, 0) =
0.264(8)(4) GeV−1, with a precision of about 3%. It trans-
lates to Γπ0→γ γ = 7.17(50) eV.

Improving this result is also important for future lattice
calculations. In [72], a significant part of the error in the
estimate of the pion-pole contribution comes from very low
virtualities.

4.2.4 Future directions

Concerning the pion-pole contribution, the current precision
is already satisfactory. A more precise determination of the
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Fig. 35 Result for the calculation of the pion transition form factor
published by the Mainz group [72]. Left: single virtual transition form
factor where a comparison with experimental data is possible. Right:

prediction for the double-virtual transition form factor. A confirmation
from the dispersive framework is also shown

decay width and a comparison with experiment would be
valuable but would probably require, in addition to high
statistics, the study of isospin breaking effects due to the
light quark mass difference.

In addition to the pion-pole, the η and η′ mesons are
expected to contribute significantly. The only determination
of the corresponding contribution to the HLbL diagram is
based on Canterbury approximants [127] and a lattice QCD
calculation would be extremely valuable. Here one has first to
face the problem of the mixing between those two states and
the extraction of the TFFs is much more challenging. How-
ever, a precision of 20% would already suffice in view of
the forthcoming experimental precision. This year, very first
results in this direction have been presented by the ETM col-
laboration during the APLAT 2020 lattice conference [141]
(Fig. 36).

4.3 Light-by-light forward scattering amplitudes

The hadronic contribution to the scattering of space-like vir-
tual photons, γ ∗γ ∗ → γ ∗γ ∗, can be studied on the lattice for
virtualities below the hadronic threshold. From a lattice point
of view, this study requires the analysis of the same four-point
correlation function as the one used in the direct approach
to ahlbl

μ Eq. (36), but in momentum space. In particular, the
knowledge of the QED weight function is not needed here.
The motivation for such a study is that the forward scattering
amplitudes can be related, using dispersive relations, to the
γ ∗γ ∗ → M fusion cross sections where M stands for any C-
parity even final state. Thus, the applicability of the hadronic
models to ahlbl

μ [138], where the QCD amplitude has been
approximated by the exchange of a few mesonic resonances,
can be tested. Furthermore, assuming that only a few states
are needed to saturate the sum rules, the lattice calculations
can provide constraints on meson transition form factors and

Fig. 36 Preliminary results for the η and η′ transition form factor using
a pion mass of 260 MeV. The integrand correspond to Eq. (53) for a
photon virtuality q2 = 1. Plot extracted from [141]

thus improve the estimate of ahlbl
μ , especially when exper-

imental measurements are missing. It is complementary to
the direct calculation of pseudoscalar transition form factors
described in the previous section.
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Fig. 37 The eight light-by-light forward scattering amplitudes (left) that can be computed on the lattice. Using dispersion relation, they are related
to two-photon fusion processes (right) that are described in terms of transition form factors

In refs. [164,165], the authors restricted their study to
the forward light-by-light scattering amplitudes with real or
spacelike photons

γ ∗(λ1, q1)γ
∗(λ2, q2) → γ ∗(λ3, q1)γ

∗(λ4, q1) (63)

where λ = ±, 0 is the transverse or longitudinal helicity of
the virtual photon. The relevant process is depicted on the left
panel of Fig. 37. Using parity and time-reversal invariance,
the 81 amplitudes associated with this process Mλ1,λ2,λ3,λ4

reduce to only 8 independent amplitudes which depend on
the 3 kinematical invariants q2

1 , q2
2 and ν = q1 · q2.

For fixed photon virtualities Q2
1 and Q2

2, the optical the-
orem can be used to write sum rules that relate each of the
eight amplitudes to γ ∗γ ∗ → M fusion cross sections where
M stands for any C-parity-even states. In the specific case of
two transverse photons, one obtains

MT T (q2
1 , q2

2 , ν) = 4ν2

π

∫ ∞

ν0

dν′
√

ν′ − q2
1q

2
2 σT T (ν′)

ν′(ν′ 2 − ν2 − iε)
(64)

whereMT T (q2
1 , q2

2 , ν) = MT T (q2
1 , q2

2 , ν)−MT T (q2
1 , q2

2 , 0)

means that a subtraction is done and σT T (ν′) is the total cross
section γ ∗γ ∗ → M with total helicities 0 and 2. Similar sum-
rules can be written for the other 7 amplitudes (see [166] for
explicit formulae).

The left hand side of Eq. (64) is computed on the lattice
starting from Eq. (36) and using adequate projector of the
four-pont correlation function, see Ref [164] for details. For
two transverse photons, MT T , one has

MT T (q2
1 , q2

2 , ν) = e4 Pμνλσ (q1, q2)Πμνσλ(q1, q2, q1),

(65)

where Pμνλσ is a projector. As in the direct lattice calculation
of ahlbl

μ , there are 5 classes of diagrams: the fully connected
and the (2+2) quark-disconnected diagrams are expected to
be dominant, whereas the (3+1), (2+1) and (1+1+1+1)

disconnected contractions are expected to be subdominant
[167,168]. Assuming SU(2) flavor symmetry, if one neglects
those sub-leading diagrams and if one assumes that reso-
nance exchanges indeed dominate the amplitudes, then one
can show that only isovector mesons contribute to the con-
nected diagrams, with a weight factor 34/9 > 1. In the (2+2)
disconnected contribution, the isovector mesons contribute
with the negative weight factor −25/9 that compensate part

of the connected contribution, while the iso-scalar mesons
contribute with weight factor 1. Those weight factors have
been used in the comparison with the lattice data obtained
with N f = 2 degenerate quarks. Similar counting rules can
be derived assuming SU(3) flavor symmetry [165].

In a second step, the right hand side of Eq. (64) is
obtained using a phenomenological description of the two-
photon fusion processes for mesons with quantum number
J PC = 0−+, 0++, 1++, 2++. As an example, the pseu-
doscalar meson contribution to σT T (ν′) is

σT T = 8π2δ(s − m2
P)

Γγγ

mP

2
√
X

m2
P

[
FPγ ∗γ ∗(Q2

1, Q
2
2)

FPγ ∗γ ∗(0, 0)

]2

,

(66)

where X is a kinematical factor. In addition to the pseu-
doscalar meson mass mP , the cross section simply depends
on the transition form factor of the P → γ ∗γ ∗ process (the
two-photon decay width is directly related to the normal-
ization of the transition form factor). Similar expressions are
obtained for the other channels. Thus, the only unknowns are
the masses of the particles and their transition form factors.
Hadronic resonances with different quantum numbers appear
with different weight in each sum rule. If one assumes that
only a few states contribute significantly, then we obtain an
over-constrained system that allow us to constrain the form
factors.

The Mainz collaboration has computed the eight light-
by-light forward scattering amplitudes [164,165] for differ-
ent virtualities and an example is depicted in Fig. 38. They
used N f = 2 Wilson fermion with two lattice spacings to
study discretization effects and four pion masses to perform
an extrapolation to the physical pion mass. Only the fully-
connected and the dominant quark-disconnected contribu-
tions have been computed. To estimate the right hand side
of the sum rules, only one resonance was included in each
channel. Using the pion TFF from a dedicated lattice simula-
tion [72], the exploratory study [165] found that it is possible
to describe the whole set of data, for virtualities in the range
[0–4] GeV2, with a single resonance in each channel and
assuming simple monopole or dipole parameterizations of
the virtuality-dependance of the form factors. The results of
the global fit to the eight amplitude, in the case of MT T , is
given by the colored bands in Fig. 38. A comparison of the
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Fig. 38 AmplitudeMT T with two transverse photons. The results cor-
respond to a lattice ensemble with a pion mass of 270 MeV. The curves
with error-bands represent the result of a fit using a phenomenological
model where the monopole and dipole masses of the TFFs are consid-
ered as free fit parameters. Extracted from [165]

TFFs with phenomenology has been performed. This anal-
ysis was mostly limited by the large statistical error in the
disconnected diagrams and if a chiral limit has been taken,
the continuum limit and the possibly large finite-size effects
remain to be studied.

A more systematic study, which includes both connected
and quark-disconnected contributions as well as a study of
FSEs might provide valuable information on resonance tran-
sition form factors. In a second step, the latter can be used
in phenomenological models or as input in the dispersive
framework to improve the determination of ahlbl

μ .

5 Conclusion

This year, the first sub-percent estimate of the leading-order
hadronic vacuum contribution to the anomalous magnetic
moment of the muon has been published by the BMW col-
laboration and the RBC/UKQCD collaboration has published
the first estimate for ahlbl

μ at the physical point with controlled
systematic errors. On the experimental side, the first results
of the Fermilab experiment [6] are expected to be published
early next year, before the final results expected within the
next few years.

Concerning the LO-HVP contribution, many collabora-
tions have presented results in the last years. Most system-
atics are now properly addressed and it becomes a mature
field of research. A confirmation of the recent BMW result
by other groups is highly desired. Meanwhile, other cross-
checks between lattice collaboration are possible and do not
require additional computer ressources : the window method,
presented in Sect. 3.1, might help to understand the spread in
the lattice results for the dominant light quark contribution.

Concerning the hadronic light-by-light contribution, the
lattice community is likely to play a major role in the
comparison with experiment. The current precision of the
RBC/UKQCD collaboration is of 45% [21] and a precision
of 20% might suffice. The Mainz group has presented pre-
liminary results at the SU(3) f point where an error of 15%
has been reached [120] and some preliminary results at lower
pion masses have been presented. The lattice community can
also provide important inputs to the dispersive framework,
especially for the light pseudoscalar-pole contributions. The
pion-pole contribution is already known with a precision of
6% [72,139] and preliminary results for all three light pseu-
doscalars have been presented by the ETM collaboration this
year [141].
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