Skip to main content
Log in

Signature of intermittency in hybrid UrQMD-hydro data at 10 AGeV Au\(+\)Au collisions

  • Regular Article – Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

An attempt has been made, in the light of scaled factorial moment (SFM) analysis, to investigate hybrid UrQMD-hydro generated events of Au+Au collisions at 10 AGeV to realize the role of hydrodynamic evolution on observed intermittency, if any. \(ln\langle F_{q}\rangle \) values for \(q=2\)–6 are found to increase with increasing values of \(lnM^{2}\) indicating unambiguously the presence of intermittency in our data sample generated with both chiral and hadronic equations of state (EoS). Although various late processes like meson-meson (MM) and meson-baryon (MB) hadronic re-scattering and/or resonance decays are found to influence the intermittency index significantly, these process could not be held responsible for the observed intermittency in hybrid UrQMD-hydro data. Moreover, the signature of intermittency is also found to exists in different sets of data sample generated with a change in initial conditions such as the start time (\(t_{start}\)) and transition energy density (TED) of the UrQMD-hydro model confirming the robustness of the observed power law behavior \(F_{q} \propto (M^{2})^{\alpha _{q}}\) in our various generated sets of hydro data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: Unlike UrQMD, hybrid UrQMD-hydro model is not an open access code. Moreover, all necessary information about the data have already been provided in the manuscript in the form of table and figures and thus there is no need of providing raw data as such.]

References

  1. A. Bialas, Nucl. Phys. A 525, 345C (1991)

    Article  ADS  Google Scholar 

  2. P. Carruthers et al., Phys. Lett. B 214, 617 (1989)

    Google Scholar 

  3. HADES Collab. (B. Kardan et al.), Nucl. Phys. A 982 431–434 (2019)

  4. A. Bialas et al., Nucl. Phys. B 308, 857–867 (1988)

    Article  ADS  Google Scholar 

  5. W. Ochs et al., Phys. Lett. B 214, 617 (1988)

    Article  ADS  Google Scholar 

  6. U. Heinz et al., Annu. Rev. Nucl. Part. Sci. 49, 529–79 (1999)

    Article  ADS  Google Scholar 

  7. N. Borghini et al., arXiv:nucl-th/0011013v1. Accessed 3 Nov 2000 (2000)

  8. A. Bialas et al., Nucl. Phys. B 273, 703–718 (1986)

    Article  ADS  Google Scholar 

  9. R.C. Hwa, Nucl. Phys. A 525, 537c–54 (1991)

    Article  ADS  Google Scholar 

  10. U. Frisch, Turbulance: The Legacy of A. N. Kolmogorov (Cambridge University Press, Cambridge, 1995)

  11. B.L. Hao, Chaos (World Scientific, Singapore, 1984)

    MATH  Google Scholar 

  12. K.R. Sreenivasan et al., J. Fluid. Mech 173, 357–386 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  13. Chiho Nonaka et al., Prog. Theor. Exp. Phys. 01A208, 31 (2012)

    Google Scholar 

  14. H. Petersen et al., Phys. Rev. C 78, 044901 (2008)

    Article  ADS  Google Scholar 

  15. M. Bleicher et al., J. Phys. G: Nucl. Part. Phys. 25, 1859–1896 (1999)

    Article  ADS  Google Scholar 

  16. K. Dey et al., Phys. Rev. C 89, 054910 (2014)

    Article  ADS  Google Scholar 

  17. N. Hussain et al., Phys. Rev. C 96, 024903 (2017)

    Article  ADS  Google Scholar 

  18. V. Ozvenchuk et al., Nucl. Phys. A 973, 104–115 (2018)

    Article  ADS  Google Scholar 

  19. J. Wu et al., Phys. Lett. B 801, 135186 (2020)

    Article  Google Scholar 

  20. S. Bhattacharjee et al., Fractals 26, 1850015 (2018)

    Article  ADS  Google Scholar 

  21. CBM Collab. (S. Seddiki), J. Phys. Conf. Ser. 503, 012027 (2014)

  22. YuB Ivanov, V.N. Russkik, V.D. Toneev, Phys. Rev. C 73, 044904 (2006)

    Article  ADS  Google Scholar 

  23. CBM Collab. (P. Satszel et al.), Acta Phys. Polon. B 41, 341 (2010)

  24. P. Bozek, Ph.D. Dissertation, Institute of Nuclear Physics, Cracow (1992)

  25. P. Bozek et al., Phys. Rep. 252, 101–176 (1995)

    Article  ADS  Google Scholar 

  26. Guo-Liang Ma et al., Nukleonika 51, S21–S27 (2006)

    Google Scholar 

  27. Y. Zhang et al., arXiv:1905.01095v3 [nucl-exp]. Accessed 10 Feb 2020 (2020)

  28. J. Steinheimer et al., Phys. Rev. Lett. 95 (2017)

  29. P. Mali et al., Can. J. Phys. 89, 949–960 (2011)

    Article  ADS  Google Scholar 

  30. A. Bialas, R.C. Hwa, Phys. Lett. B 253, 436–438 (1991)

    Article  ADS  Google Scholar 

  31. S. Bhattacharjee et al., Adv. High Energy Phys. 2018, 6384357 (2018)

    Google Scholar 

  32. D.H. Rischke et al., Nucl. Phys. A 595, 346–382 (1995)

    Article  ADS  Google Scholar 

  33. D.H. Rischke et al., Nucl. Phys. A 595, 383–408 (1995)

    Article  ADS  Google Scholar 

  34. D. Zschiesche et al., Phys. Lett. B 547, 7–14 (2002)

    Article  ADS  Google Scholar 

  35. S. Bass et al., Prog. Part. Nucl. Phys. 41, 225–370 (1998)

    Article  ADS  Google Scholar 

  36. Sascha Vogel et al., EPJ Web Conf. 36, 00019 (2012)

    Article  Google Scholar 

  37. V. Klochkov et al., J. Phys. G Conf. Ser. 798, 012059 (2017)

  38. C. Spieles et al., arXiv:2006.01220v1 [nucl-th]. Accessed 1 June 2020 (2020)

  39. E895 Collab. (J. L. Klay et al.), Phys. Rev. C 68, 054905 (2003)

  40. EMU01 Collab. (M. Adamovich et al.), Nucl. Phys. B 388, 3 (1992)

  41. P. Sarma et al., Phys. Rev. C 99, 034901 (2019)

    Article  ADS  Google Scholar 

  42. NA22 Collab., (I.V. Ajinenko et al.), Phys. Lett. B 222, 306 (1989)

  43. C.B. Chiu et al., Mod. Phys. Lett. A 5, 2651 (1990)

    Article  ADS  Google Scholar 

  44. N.M. Agarbabyan et al., Phys. Lett. B 382, 305 (1996)

    Article  ADS  Google Scholar 

  45. R.C. Hwa et al., Phys. Rev. Lett. 69, 5 (1992)

    Article  MathSciNet  Google Scholar 

  46. R.C. Hwa, Q. Zhang, Phys. Rev. D 62, 014003 (2000)

    Article  ADS  Google Scholar 

  47. B. Bhattacharjee, Nucl. Phys. A 748, 641 (2005)

    Article  ADS  Google Scholar 

  48. A. Bialas et al., Phys. Lett. B 252, 483 (1990)

    Article  ADS  Google Scholar 

  49. P. Lipa et al., Phys. Lett. B 223, 465 (1989)

    Article  ADS  Google Scholar 

  50. J. Steinheimer et al., EPJ Web Conf. 171, 05003 (2018)

    Article  Google Scholar 

  51. D.K. Mishra et al., Phys. Rev. C 94, 014905 (2016)

    Article  ADS  Google Scholar 

  52. J. Steinheimer et al., arXiv:1203:5302v2 [nucl-th] (2013)

  53. J. Steinheimer et al., Phys. Rev. Lett. 110, 042501 (2013)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors thankfully acknowledge the UrQMD group for developing UrQMD and UrQMD-hydro codes and allowing us to use the same for this work. The authors also acknowledge the Department of Science and Technology (DST), Government of India, for providing funds to develop a high-performance computing cluster (HPCC) facility, through the Project No. SR/MF/PS-01/2014-GU, which has been used to generated Monte Carlo (MC) events.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Buddhadeb Bhattacharjee.

Additional information

Communicated by Evgeni Kolomeitsev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gope, S., Bhattacharjee, B. Signature of intermittency in hybrid UrQMD-hydro data at 10 AGeV Au\(+\)Au collisions. Eur. Phys. J. A 57, 44 (2021). https://doi.org/10.1140/epja/s10050-021-00361-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-021-00361-7

Navigation