Skip to main content

Advertisement

Log in

Nuclear shape evolution and shape coexistence in Zr and Mo isotopes

  • Regular Article – Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

The phenomena of shape evolution and shape coexistence in even–even \(^{88-114}\)Zr and \(^{90-116}\)Mo isotopes are studied by employing covariant density functional theory (CDFT) with density-dependent point-coupling parameter set, DD-PCX, and with separable pairing interaction. The results for the rms deviation in binding energies, two-neutron separation energy, the differential variation of two-neutron separation energy, and rms charge radii, as a function of neutron number, are presented and compared with available experimental data. In addition to the oblate–prolate shape coexistence in \(^{96-110}\)Zr isotopes, the correlations between shape transition and discontinuity in the observables are also examined. A smooth trend of charge radii in Mo isotopes is found to be due to the manifestation of triaxiality softness. The observed oblate and prolate minima are related to the low single-particle energy level density around the Fermi level of neutron and proton, respectively. The rapid shape transition in Zr isotopes near N \(\approx \) 60 is identified to be caused by the evolution of the shell structure associated with massive proton excitations to 1\(\pi g_{9/2}\) orbit. The present calculations also predict a deformed semi-bubble structure in the \(^{100}\)Zr isotope.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data Availability Statement

This manuscript has associated data in a data repository. [Authors’ comment: Some of the data are given in the Tables of this article. However, all the data are available upon request by contacting the corresponding author.]

References

  1. P. Cejnar, J. Jolie, R.F. Casten, Rev. Mod. Phys. 82, 3 (2010)

    Article  Google Scholar 

  2. U. Hager et al., Phys. Rev. Lett. 96, 042504 (2006)

    Article  ADS  Google Scholar 

  3. F. Buchinger et al., Phys. Rev. C 41, 2883 (1990)

    Article  ADS  Google Scholar 

  4. P. Campbell et al., Phys. Rev. Lett. 89, 082501 (2002)

    Article  ADS  Google Scholar 

  5. S. Raman, C.W. Nestor Jr., P. Tikkanen, At. Data Nucl. Data Tables 78, 1–128 (2001)

    Article  ADS  Google Scholar 

  6. http://www.nndc.bnl.gov/.

  7. F.C. Charlwood et al., Phys. Lett. B 674, 23 (2009)

    Article  ADS  Google Scholar 

  8. J.L. Wood, K. Heyde, W. Nazarewicz, M. Huyse, P. Van Duppen, Phys. Rep. 215, 101 (1992)

    Article  ADS  Google Scholar 

  9. K. Heyde, J.L. Wood, Rev. Mod. Phys. 83, 1467 (2011)

    Article  ADS  Google Scholar 

  10. J. Eberth, R.A. Meyer, K. Sistemich, Nuclear structure of the zirconium region (Springer, Berlin, 1988)

    Book  Google Scholar 

  11. A. Chakraborty et al., Phys. Rev. Lett. 110, 022504 (2013)

    Article  ADS  Google Scholar 

  12. P. Singh et al., Phys. Rev. Lett. 121, 192501 (2018)

    Article  ADS  Google Scholar 

  13. C.Y. Wu et al., Phys. Rev. C 70, 064312 (2004)

    Article  ADS  Google Scholar 

  14. C.Y. Wu, H. Hua, D. Cline, Phys. Rev. C 68, 034322 (2003)

    Article  ADS  Google Scholar 

  15. M. Zielinska et al., Acta Phys. Pol. B 36, 1289 (2005)

    ADS  Google Scholar 

  16. K. Wrzosek-Lipska et al., Int. J. Mod. Phys. E 20, 443 (2011)

    Article  ADS  Google Scholar 

  17. K. Wrzosek-Lipska et al., Phys. Rev. C 86, 064305 (2012)

    Article  ADS  Google Scholar 

  18. J. Ha et al., Phys. Rev. C 101, 044311 (2020)

    Article  ADS  Google Scholar 

  19. K. Nomura, N. Shimizu, D. Vretenar, T. Niksic, T. Otsuka, Phys. Rev. Lett. 108, 132501 (2012)

    Article  ADS  Google Scholar 

  20. R. Rodriguez-Guzman, P. Sarriguren, L.M. Robledo, S. Perez-Martin, Phys. Lett. B 691, 202 (2010)

    Article  ADS  Google Scholar 

  21. A. Petrovici, Phys. Rev. C 85, 034337 (2012)

    Article  ADS  Google Scholar 

  22. J. Xiang, Z.P. Li, Z.X. Li, J.M. Yao, J. Meng, Nucl. Phys. A 873, 1 (2012)

    Article  ADS  Google Scholar 

  23. Bao-Mei Yao, Jian-You Guo, Mod. Phys. Lett. A 25, 1177 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  24. M. Bhuyan, Phys. Rev. C 92, 034323 (2015)

    Article  ADS  Google Scholar 

  25. H. Abusara and Shakeb Ahmad, Phys. Rev. C 96, 064303 (2017)

  26. H. Abusara, A. Shakeb, S. Othman, Phys. Rev. C 95, 054302 (2017)

    Article  ADS  Google Scholar 

  27. K. Nomura, R. Rodriguez-Guzman, L.M. Robledo, Phys. Rev. C 94, 044314 (2016)

    Article  ADS  Google Scholar 

  28. J.E. Garcia-Ramos, K. Heyde, Phys. Rev. C 100, 044315 (2019)

    Article  ADS  Google Scholar 

  29. M. Bender, G.F. Bertsch, P.-H. Heenen, Phys. Rev. C 73, 034322 (2006)

    Article  ADS  Google Scholar 

  30. M. Bender, G.F. Bertsch, P.-H. Heenen, Phys. Rev. C 78, 054312 (2008)

    Article  ADS  Google Scholar 

  31. Y. El Bassem, M. Oulne, Nucl. Phys. A 957, 22 (2017)

    Article  ADS  Google Scholar 

  32. H. Mei, J. Xiang, J.M. Yao, Z.P. Li, J. Meng, Phys. Rev. C 85, 034321 (2012)

    Article  ADS  Google Scholar 

  33. J. Meng, S.-G. Zhou, I. Tanihata, Phys. Lett. B 532, 209–214 (2002)

    Article  ADS  Google Scholar 

  34. J. Meng, H. Toki, J.Y. Zeng, S.Q. Zhang, S.-G. Zhou, Phys. Rev. C 65, 041302 (2002)

    Article  ADS  Google Scholar 

  35. Smriti Thakur, Shashi K. Dhiman, Mod. Phys. Lett. A 34, 1950014 (2019)

    Article  ADS  Google Scholar 

  36. Virender Thakur, Nucl. Phys. A 992, 121623 (2019)

    Article  Google Scholar 

  37. Virender Thakur, Pankaj Kumar, Suman Thakur, Smriti Thakur, Vikesh Kumar, Shashi K. Dhiman, Nucl. Phys. A 1002, 121981 (2020)

    Article  Google Scholar 

  38. P. Kumar, S.K. Dhiman, Nucl. Phys. A 1001, 121935 (2020)

    Article  Google Scholar 

  39. P.W. Zhao, Z.P. Li, J.M. Yao, J. Meng, Phys. Rev. C 82, 054319 (2010)

    Article  ADS  Google Scholar 

  40. T. Niksic, D. Vretenar, P. Ring, Phys. Rev. C 78, 034318 (2008)

    Article  ADS  Google Scholar 

  41. E. Yuksel, T. Marketin, N. Paar, Phys. Rev. C 99, 034318 (2019)

    Article  ADS  Google Scholar 

  42. T. Niksic, N. Paar, D. Vretenar, P. Ring, Comput. Phys. Commun. 185, 1808 (2014)

    Article  ADS  Google Scholar 

  43. Y. Tian, Z.Y. Ma, P. Ring, Phys. Lett. B 676, 44–50 (2009)

    Article  ADS  Google Scholar 

  44. Y. Tian, Z.Y. Ma, P. Ring, Phys. Rev. C 80, 024313 (2009)

    Article  ADS  Google Scholar 

  45. T. Niksic, P. Ring, D. Vretenar, Y. Tian, Z.Y. Ma, Phys. Rev. C 81, 054318 (2010)

    Article  ADS  Google Scholar 

  46. T. Niksic, D. Vretenar, P. Ring, Prog. Part. Nucl. Phys. 66, 519–548 (2011)

    Article  ADS  Google Scholar 

  47. X.W. Xia et al., At. Data Nucl. Data Tables 121, 64 (2018)

    Google Scholar 

  48. M. Wang, G. Audi, F.G. Kondev, W.J. Huang, S. Naimi, X. Xu, Chin. Phys. C 41, 030003 (2017)

    Article  ADS  Google Scholar 

  49. M. Bender, P.-H. Heenen, P.-G. Reinhard, Rev. Mod. Phys. 75, 121 (2003)

    Article  ADS  Google Scholar 

  50. J.-P. Delaroche, M. Girod, J. Libert, H. Goutte, S. Hilaire, S. Peru, N. Pillet, G.F. Bertsch, Phys. Rev. C 81, 014303 (2010)

    Article  ADS  Google Scholar 

  51. N. Bezginov, T. Valdez, M. Horbatsch, A. Marsman, A.C. Vutha, E.A. Hessels, Science 365, 1007–1012 (2019)

    Article  ADS  Google Scholar 

  52. T. Togashi, Y. Tsunoda, T. Otsuka, N. Shimizu, Phys. Rev. Lett. 117, 172502 (2016)

    Article  ADS  Google Scholar 

  53. P.-G. Reinhard, E.W. Otten, Nucl. Phys. A 420, 173–192 (1984)

    Article  ADS  Google Scholar 

  54. G. Saxena, M. Kumawat, M. Kaushik, S.K. Jain, and Mamta Aggarwal, Phys. Lett. B 788, 1–6 (2019)

  55. E. Khan, M. Grasso, J. Margueron, N. Van Giai, Nucl. Phys. A 800, 37 (2008)

    Article  ADS  Google Scholar 

  56. J. Decharge, J.-F. Berger, M. Girod, K. Dietrich, Nucl. Phys. A 716, 55 (2003)

    Article  ADS  Google Scholar 

  57. J.M. Yao, S. Baroni, M. Bender, P.-H. Heenen, Phys. Rev. C 86, 014310 (2012)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Himachal Pradesh University for providing computational facilities. One of the authors, Mr. Pankaj Kumar, also thank Council of Scientific and Industrial Research (CSIR), New Delhi for providing financial assistance Senior Research Fellowship vide reference no. 09/237(0165)/2018-EMR-I.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pankaj Kumar.

Additional information

Communicated by Michael Bender

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, P., Thakur, V., Thakur, S. et al. Nuclear shape evolution and shape coexistence in Zr and Mo isotopes. Eur. Phys. J. A 57, 36 (2021). https://doi.org/10.1140/epja/s10050-021-00346-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-021-00346-6

Navigation