Skip to main content
Log in

Mechanism of the \(^{144}\)Sm(\(^7\)Li,\(^6\)Li\(^*_{3+}\))\(^{145}\)Sm reaction at 30 MeV

  • Regular Article – Experimental Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

In a recent experiment investigating the origin of the \(\alpha \) particle yield in the \(^7\)Li + \(^{144}\) Sm system the measured \(\alpha + d\) coincidences at a bombarding energy of 30 MeV were shown to arise from decay of the 2.186-MeV \(3^+\) resonance of \(^6\)Li. In this work we demonstrate that the laboratory frame \(\alpha \) particle angular distribution extracted from these data can be well described by a standard coupled channels Born approximation calculation and, furthermore, that the mechanism is dominated by direct, one-step single neutron stripping to the \(3^+\) resonance, as shown previously for the \(^7\)Li + \(^{65}\)Cu and \(^{93}\)Nb systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: The data were taken from Refs. [5] and [11].]

References

  1. C.E. Anderson, Proc. 2nd Conf. on reactions between complex nuclei, Gatlinburg, 1960, ed. A. Zucker, E. C. Halbert and F. T. Howard (Wiley, NY,) (1960), p. 67

  2. R.L. Gluckstern, G. Breit, Proc. 2nd Conf. on reactions between complex nuclei, Gatlinburg, 1960, ed. A. Zucker, E. C. Halbert and F. T. Howard (Wiley, NY,) (1960), p. 77

  3. A. Shrivastava, A. Navin, N. Keeley, K. Mahata, K. Ramachandran, V. Nanal, V.V. Parkar, A. Chatterjee, S. Kailas, Phys. Lett. B 633, 463 (2006)

    Article  ADS  Google Scholar 

  4. S.K. Pandit, A. Shrivastava, K. Mahata, N. Keeley, V.V. Parkar, P.C. Rout, K. Ramachandran, I. Martel, C.S. Palshetkar, A. Kumar, A. Chatterjee, S. Kailas, Phys. Rev. C 93, 061602(R) (2016)

    Article  ADS  Google Scholar 

  5. P.F.F. Carnelli, D.Martinez Heimann, A.J. Pacheco, A. Arazi, O.A. Capurro, J.O.Fernández Niello, M.A. Cardona, E. de Barbará, J.M. Figueira, D.L. Hojman, G.V. Martí, A.E. Negri, Nucl. Phys. A 969, 94 (2018)

    Article  ADS  Google Scholar 

  6. A. Diaz-Torres, Comput. Phys. Comm. 182, 1100 (2011)

    Article  ADS  Google Scholar 

  7. R. Raffei, R. du Rietz, D.H. Luong, D.J. Hinde, M. Dasgupta, M. Evers, A. Diaz-Torres, Phys. Rev. C 81, 024601 (2010)

    Article  ADS  Google Scholar 

  8. N.J. Davis, R.P. Ward, K. Rusek, N.M. Clarke, G. Tungate, J.A.R. Griffith, S.J. Hall, O. Karban, I. Martel-Bravo, J.M. Nelson, J. Gómez-Camacho, T. Davinson, D.G. Ireland, K. Livingston, E.W. Macdonald, R.D. Page, P.J. Sellin, C.H. Shepherd-Themistocleous, A.C. Shotter, P.J. Woods, Phys. Rev. C 69, 064605 (2004)

    Article  ADS  Google Scholar 

  9. I.J. Thompson, Comput. Phys. Rep. 7, 167 (1988)

    Google Scholar 

  10. K. Rusek, C.O. Blyth, N.M. Clarke, P.R. Dee, B.R. Fulton, J.A.R. Griffith, S.J. Hall, N. Keeley, I. Martel-Bravo, G. Tungate, N.J. Davis, K.A. Connell, J.S. Lilley, M.W. Bailey, J. Gómez-Camacho, Nucl. Phys. A 575, 412 (1994)

    Article  ADS  Google Scholar 

  11. J.M. Figueira, J.O.Fernández Niello, A. Arazi, O.A. Capurro, P. Carnelli, L. Fimiani, G.V. Martí, D.Martinez Heimann, A.E. Negri, A.J. Pacheco, J. Lubian, D.S. Monteiro, P.R.S. Gomes, Phys. Rev. C 81, 024613 (2010)

    Article  ADS  Google Scholar 

  12. J. Cook, Nucl. Phys. A 388, 153 (1982)

    Article  ADS  Google Scholar 

  13. K.-I. Kubo, M. Hirata, Nucl. Phys. A 187, 186 (1972)

    Article  ADS  Google Scholar 

  14. B. Mukeru, M.L. Lekala, Nucl. Phys. A 965, 1 (2017)

    Article  ADS  Google Scholar 

  15. A. Pakou, N. Alamanos, N.M. Clarke, N.J. Davis, G. Doukelis, G. Kalyva, M. Kokkoris, A. Lagoyannis, T.J. Mertzimekis, A. Musumarra, N.G. Nicolis, C. Papachristodoulou, N. Patronis, G. Perdikakis, D. Pierroutsakou, D. Roubos, K. Rusek, S. Spyrou, Ch. Zarkadas, Phys. Lett. B 633, 691 (2006)

    Article  ADS  Google Scholar 

  16. S. Cohen, D. Kurath, Nucl. Phys. A 101, 1 (1967)

    Article  ADS  Google Scholar 

  17. M. Mazzocco, D. Torresi, D. Pierroutsakou, N. Keeley, L. Acosta, A. Boiano, C. Boiano, T. Glodariu, A. Guglielmetti, M. La Commara, J.A. Lay, I. Martel, C. Mazzocchi, P. Molini, C. Parascandolo, A. Pakou, V.V. Parkar, M. Romoli, K. Rusek, A.M. Sánchez-Benítez, M. Sandoli, O. Sgouros, C. Signorini, R. Silvestri, F. Soramel, V. Soukeras, E. Stiliaris, E. Strano, L. Stroe, K. Zerva, Phys. Rev. C 92, 024615 (2015)

    Article  ADS  Google Scholar 

  18. D.R. Tilley, C.M. Cheves, J.L. Godwin, G.M. Hale, H.M. Hofmann, J.H. Kelley, C.G. Sheu, H.R. Welle, Nucl. Phys. A 708, 3 (2002)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Polish National Science Centre under Contract No. 2014/14/M/ST2/00738 (COPIN-INFN Collaboration).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Keeley.

Additional information

Communicated by Alessia Di Pietro

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rusek, K., Mazzocco, M., Keeley, N. et al. Mechanism of the \(^{144}\)Sm(\(^7\)Li,\(^6\)Li\(^*_{3+}\))\(^{145}\)Sm reaction at 30 MeV. Eur. Phys. J. A 57, 10 (2021). https://doi.org/10.1140/epja/s10050-020-00335-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-020-00335-1

Navigation