Skip to main content
Log in

The \(^3\)He+\(^5\)He\(\rightarrow \) \(\alpha \)+\(\alpha \) reaction below the Coulomb barrier via the Trojan Horse Method

  • Regular Article – Experimental Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

For the first time in an application to nuclear astrophysics, a process induced by the unstable \(^5\)He = (\(^4\)He-n) nucleus, the \(^3\)He+\(^5\)He\(\rightarrow \)2\(\alpha \) reaction, has been studied through the Trojan Horse Method (THM). For that purpose, the quasi-free (QF) contribution of the \(^9\)Be(\(^3\)He,\(\alpha \alpha \))\(^4\)He reaction was selected at \(E_{^{3}\text{ He }}=4\) MeV incident energy. The reaction was studied in a kinematically complete experiment following a recent publication (Spitaleri et al. in Eur Phys J A 56:18, 2020), where for the quasi free contribution the momentum distribution between \(\alpha \) and \(^5\)He particle cluster in the \(^9\)Be nucleus in the ground state have been extracted. The angular distribution of the QF \(^3\)He+\(^5\)He\(\rightarrow \)2\(\alpha \) reaction was measured at \(\theta _{cm}\) = 78\(^{\circ }\)–115\(^{\circ }\). The energy dependence of the differential cross section of the \(^3\)He+\(^5\)He\( \rightarrow \)2\(\alpha \) virtual reaction was extracted in the energy range \(E_{cm}\) = 0–650 keV. The total cross section obtained from the Trojan-horse method was normalized to absolute cross sections from a theoretical calculation in the energy range \(E_{cm}\) =300–620 keV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: All data generated during this study are contained in this published article (or reference therein).]

References

  1. C. Spitaleri, M. Lattuada, A. Cvetinović, S.M. Milin, P. Colović, G. D’Agata, D. Dell’Aquila, G.L. Guardo, M. Gulino, O. Trippella, M. La Cognata, L. Lamia, D. Lattuada, L. Chengbo, S. Messina, D. Nurkic, S.S. Perrotta, R.G. Pizzone, R. Popoconski, S. Romano, N. Skukan, R. Sparta, S. Szilner, M. Uroic, N. Vukman, Eur. Phys. J. A 56, 18 (2020)

    ADS  Google Scholar 

  2. G. Baur, Phys. Lett. 178, 135 (1986)

    Google Scholar 

  3. C. Spitaleri, in Problems of Fundamental Modern Physics, II: Proceedings, Ed. by R. Cherubini, P. Dalpiaz, and B. Minetti (World Sci., 1991), p. 21 (1991)

  4. S. Cherubini, V.N. Kondratyev, M. Lattuada, C. Spitaleri, Đ. Miljanic, M. Zadro, G. Baur, Astrophys. J., 457, 855 (1996)

  5. S. Typel, H.H. Wolter, Few-Body Syst. 29, 75 (2000)

    ADS  Google Scholar 

  6. S. Typel, G. Baur, Ann. Phys. 305, 228 (2003)

    ADS  Google Scholar 

  7. C. Spitaleri, S. Cherubini, A. Del Zoppo, A. Di Pietro, P. Figuera, M. Gulino, M. Lattuada, Đ. Miljanić, A. Musumarra, M.G. Pellegriti, R.G. Pizzone, C. Rolfs, S. Romano, S. Tudisco, A. Tumino, Nucl. Phys. A 719, 99c (2003)

  8. A.M. Mukhamedzhanov, L.D. Blokhintsev, B.F. Irgaziev, A.S. Kadyrov, M. La Cognata, C. Spitaleri, R.E. Tribble, J. Phys. G Nucl. Part. Phys. 35, 014016 (2008)

    ADS  Google Scholar 

  9. A.M. Mukhamedzhanov, Phys. Rev. C 84, 044616 (2011)

    ADS  Google Scholar 

  10. C. Spitaleri, Proceedings of the International School of Physics “Enrico Fermi”, 178, 333-354 (2011)

  11. C. Spitaleri, A.M. Mukhamedzhanov, L.D. Blokhintsev, M. La Cognata, R.G. Pizzone, A. Tumino, Phys. At. Nucl. 74, 1763 (2011)

    Google Scholar 

  12. R.E. Tribble, C.A. Bertulani, M. La Cognata, A.M. Mukhamedzhanov, C. Spitaleri, Rep. Progr. Phys. 77, 106901 (2014)

    ADS  MathSciNet  Google Scholar 

  13. C. Spitaleri, M. La Cognata, L. Lamia, A.M. Mukhamedzhanov, R.G. Pizzone, Eur. Phys. J. A 52, 77 (2016)

    ADS  Google Scholar 

  14. C. Spitaleri, M. La Cognata, L. Lamia, R.G. Pizzone, A. Tumino, Euro. Phys. J. A 55, 161 (2019)

    ADS  Google Scholar 

  15. S. Cherubini, M. Gulino, C. Spitaleri, G.G. Rapisarda, M. La Cognata, L. Lamia, R.G. Pizzone, S. Romano, S. Kubono, H. Yamaguchi, S. Hayakawa, Y. Wakabayashi, N. Iwasa, S. Kato, T. Komatsubara, T. Teranishi, A. Coc, N. de Sereville, F. Hammache, G. Kiss, S. Bishop, D.N. Binh, Phys. Rev. C 92, 015805 (2015)

    ADS  Google Scholar 

  16. R.G. Pizzone, B.T. Roeder, M. McCleskey, L. Trache, R.E. Tribble, C. Spitaleri, C.A. Bertulani, S. Cherubini, M. Gulino, I. Indelicato, M. La Cognata, L. Lamia, G.G. Rapisarda, R. Spartá, Eur. Phys. J. A 52, 24 (2016)

    ADS  Google Scholar 

  17. Q.-G. Wen, C.-B. Li, S.-H. Zhou, B. Irgaziev, Y.-Y. Fu, C. Spitaleri, M. La Cognata, J. Zhou, Q.-Y. Meng, L. Lamia, M. Lattuada, Phys. Rev. C 93, 035803 (2016)

    ADS  Google Scholar 

  18. L. Lamia, M. Mazzocco, R.G. Pizzone, S. Hayakawa, M. La Cognata, C. Spitaleri, C.A. Bertulani, A. Boiano, C. Boiano, C. Broggini, A. Caciolli, S. Cherubini, G. D’Agata, H. da Silva, R. Depalo, F. Galtarossa, G.L. Guardo, M. Gulino, I. Indelicato, M. La Commara, G. La Rana, R. Menegazzo, J. Mrazek, A. Pakou, C. Parascandolo, D. Piatti, D. Pierroutsakou, S.M.R. Puglia, S. Romano, G.G. Rapisarda, A.M. Sánchez-Benítez, M.L. Sergi, O. Sgouros, F. Soramel, V. Soukeras, R. Spartá, E. Strano, D. Torresi, A. Tumino, H. Yamaguchi, G.L. Zhang, Astrophys. J. 879, 23 (2019)

    ADS  Google Scholar 

  19. J. Kasagi, T. Nakagawa, N. Sekine, T. Tohei, H. Ueno, Nucl. Phys. A 239, 233 (1975)

    ADS  Google Scholar 

  20. N. Arena, D. Vinciguerra, F. Riggi, C. Spitaleri, Lett. Nuovo Cimento 17, 231 (1976)

    Google Scholar 

  21. P.G. Fallica, M. Lattuada, F. Riggi, C. Spitaleri, C.M. Sutera, D. Vinciguerra, Phys. Rev. C 24, 1394 (1981)

    ADS  Google Scholar 

  22. M. Lattuada, F. Riggi, C. Spitaleri, D. Vinciguerra, Nucl. Phys. A 458, 493 (1986)

    ADS  Google Scholar 

  23. N. Arena, D. Vinciguerra, M. Lattuada, F. Riggi, C. Spitaleri, Il Nuovo Cimento 45, 405 (1978)

    Google Scholar 

  24. S. Barbarino, M. Lattuada, F. Riggi, C. Spitaleri, D. Vinciguerra, Phys. Rev. C 21, 1104 (1980)

    ADS  Google Scholar 

  25. B. Treiman, N. Yang, Phys. Rev. Lett. 8, 140 (1962)

    ADS  Google Scholar 

  26. G.R. Satchler, Direct Nuclear Reactions, International Series of Monographs on Physics (Oxford University Press, 1983) p. 211

  27. C.A. Bertulani, Nuclei in the Cosmos (World Scientific, Singapore, 2013). https://doi.org/10.1142/8573

    Book  Google Scholar 

  28. R.G. Pizzone, C. Spitaleri, A.M. Mukhamedzhanov, L.D. Blokhintsev, C.A. Bertulani, B.F. Irgaziev, M. La Cognata, L. Lamia, S. Romano, Phys. Rev. C 80, 025807 (2009)

    ADS  Google Scholar 

  29. R.G. Pizzone, C. Spitaleri, S. Cherubini, M. La Cognata, M. Lamia, Đ. Miljanić, A. Musumarra, S. Romano, A. Tumino, S. Tudisco, and S. Typel, Phys. Rev. C 71, 055801 (2005)

  30. G.F. Chew, G.C. Wick, Phys. Rev. 85, 636 (1952)

    ADS  Google Scholar 

  31. I.S. Shapiro, Sov. Phys. Usp. 10, 515 (1967)

    ADS  Google Scholar 

  32. J.V. Meboniya, Phys. Lett. A 30, 153 (1969)

    Google Scholar 

  33. N. Soic, D. Cali, S. Cherubini, E. Costanzo, M. Lattuada, M. Milin, D. Miljanić, S. Romano, C. Spitaleri, M. Zadro, Eur. Phys. J. A 3, 303 (1998)

    ADS  Google Scholar 

  34. N. Keeley, K.W. Kemper, K. Rusek, Phys. Rev. C 64, 031602 (2001)

    ADS  Google Scholar 

  35. I.S. Shapiro, Interaction of High-Energy Particles with Nuclei, International School of Physics ”Enrico Fermi”, Course XXXVIII, edited by E. Ericson (Academic Press, New York) p. 210 (1967)

  36. M. Zadro, Đ. Miljanić, C. Spitaleri, G. Calvi, M. Lattuada, F. Riggi, Phys. Rev. C 40, 181 (1989)

    ADS  Google Scholar 

  37. C. Spitaleri, M. Aliotta, S. Cherubini, M. Lattuada, Đ.Miljanić, S. Romano, N. Soić, M. Zadro, R.A. Zappala, Phys. Rev.C 60 055802 (1999)

  38. M. Lattuada, R.G. Pizzone, S. Typel, P. Figuera, Đ. Miljanić, A. Musumarra, M.G. Pellegriti, C. Rolfs, C. Spitaleri, and H.H. Wolter, Astrophys. J 562, 1076 (2001)

  39. A. Tumino, C. Spitaleri, M.L. Sergi, V. Kroha, V. Burjan, S. Cherubini, Zs. Fülöp, M. La Cognata, L. Lamia, J. Novác, R.G. Pizzone, S. Romano, E. Somorjai, S. Tudisco, J. Vincour, Eur. Phys. J. A 27, Supplement 243 (2006)

  40. C. Spitaleri, A.M. Mukhamedzhanov, S. Typel, R.G. Pizzone, M. Aliotta, S. Blagus, M. Bogovac, S. Cherubini, P. Figuera, M. Lattuada, M. Milin, Đ. Miljanić, A. Musumarra, M.G. Pellegriti, D. Rendi’c, C. Rolfs, S. Romano, N. Soić, A. Tumino, H.H. Wolter, M. Zadro, Phys. Rev. C 63, 055801 (2001)

  41. R.G. Pizzone, C. Spitaleri, L. Lamia, C. Bertulani, A. Mukhamedzhanov, L. Blokhintsev, V. Burjan, S. Cherubini, Z. Hons, G.G. Kiss, V. Kroha, M. La Cognata, C. Li, J. Mrazek, S. Piskor, S.M.R. Puglia, G.G. Rapisarda, S. Romano, M.L. Sergi, A. Tumino, Phys. Rev. C 83, 045801 (2011)

    ADS  Google Scholar 

  42. A. Rinollo, S. Romano, C. Spitaleri, C. Bonomo, S. Cherubini, A. Del Zoppo, P. Figuera, M. La Cognata, L. Lamia, A. Musumarra, M.G. Pellegritia, R.G. Pizzone, C. Rolf, D. Schürmann, F. Strieder, S. Tudisco, A. Tumino, Nucl. Phys. A 758, 146c (2005)

    ADS  Google Scholar 

  43. A. Tumino, C. Spitaleri, A.M. Mukhamedzhanov, S. Typel, M. Aliotta, V. Burjan, M. Gimenez, M. Del Santo, G.G. Kiss, V. Kroha, Z. Hons, M. La Cognata, L. Lamia, J. Mrazek, R.G. Pizzone, S. Piskor, G.G. Rapisarda, S. Romano, M.L. Sergi, R. Spartá, Phys. Lett. B 700, 111 (2011)

    ADS  Google Scholar 

  44. R.G. Pizzone, R. Spartà, C.A. Bertulani, C. Spitaleri, M. La Cognata, J. Lalmansingh, L. Lamia, A. Mukhamedzhanov, A. Tumino, Astrophys. J. 786, 112 (2014)

    ADS  Google Scholar 

  45. M. La Cognata, C. Spitaleri, O. Trippella, G.G. Kiss, G.V. Rogachev, A.M. Mukhamedzhanov, M. Avila, G.L. Guardo, E. Koshchiy, A. Kuchera, L. Lamia, S.M.R. Puglia, S. Romano, D. Santiago, R. Spartá, Phys. Rev. Lett. 109, 232701 (2012)

    ADS  Google Scholar 

  46. G.L. Guardo, C. Spitaleri, L. Lamia, M. Gulino, M. La Cognata, X. Tang, R. de Boer, X. Fang, V. Goldberg, J. Mrazek, A. Mukhamedzhanov, M. Notani, R.G. Pizzone, G.G. Rapisarda, M.L. Sergi, M. Wiescher, Phys. Rev. C 95, 025807 (2017)

    ADS  Google Scholar 

  47. E. Costanzo, M. Lattuada, S. Romano, D. Vinciguerra, M. Zadro, Nucl. Instrum. Method Phys. Res. A 295, 373 (1990)

    ADS  Google Scholar 

  48. C. Spitaleri, L. Lamia, A. Tumino, R.G. Pizzone, S. Cherubini, A. Del Zoppo, P. Figuera, M. La Cognata, A. Musumarra, M.G. Pellegriti, A. Rinollo, C. Rolfs, S. Romano, S. Tudisco, Phys. Rev. C 69, 055806 (2004)

    ADS  Google Scholar 

  49. D.R. Tilley, J.H. Kelley, J.L. Godwin, D.J. Millener, J.E. Purcell, C.G. Sheu, H.R. Weller, Nucl. Phys. A 745, 155 (2004)

    ADS  Google Scholar 

  50. H.J. Assenbaum, K. Lagangke, C. Rolfs, Z. Phys, A 327, 461 (2001)

    ADS  Google Scholar 

  51. F. Strieder, C. Rolfs, C. Spitaleri, P. Corvisiero, Naturwissenschaften 88, 461 (2001)

    ADS  Google Scholar 

  52. A. Tumino, C. Spitaleri, A. Mukhamedzhanov, G.G. Rapisarda, L. Campajola, S. Cherubini, V. Crucilla, Z. Elekes, Z. Fulop, L. Gialanella, M. Gulino, G. Gyorky, G. Kiss, M. La Cognata, L. Lamia, A. Ordine, R.G. Pizzone, S. Romano, M.L. Sergi, E. Somorjai, Phys. Rev. C 78, 064001 (2008)

    ADS  Google Scholar 

  53. M. Jain, P.G. Roos, H.G. Pugh, H.D. Holmgren, Nucl. Phys. A 153, 49 (1970)

    ADS  Google Scholar 

  54. S. Typel, Eur. Phys. J. A 56, 286 (2020)

    ADS  Google Scholar 

  55. X. Hu, D.R. Tilley, J.H. Kelley, Nucl. Phys. A 708, 3 (2002)

    ADS  Google Scholar 

  56. M. Famiano, A.B. Balantekin, T. Kajino, M. Kusakabe, K. Mori, Y. Luo, Astrophys. J. 898, 163 (2020)

    ADS  Google Scholar 

Download references

Acknowledgements

C.A.B. was partially supported by the U.S. DOE Grant No. DE-FG02-08ER41533 and funding contributed by the LANL Collaborative Research Program by the Texas A&M System National Laboratory Office and Los Alamos National Laboratory. A.M.M. acknowledges support from the U.S. DOE Grant No. DE-FG02-93ER40773 and NNSA Grant No. DENA 0003841. S.T. is grateful for the support from the LNS during a stay in January 2020 that initiated the theoretical calculation, T.K. was partially supported by Grants-in-Aid for Scientific Research of JSPS (20K03958, 17K05459). This work has been partially supported by the Italian Ministry of University (MIUR) under grant LNS - Astrofisica Nucleare (fondi premiali) and by PON RI 2014-2020 - AIM (Attraction and International Mobility), project AIM1848704-3, by the Croatian Science Foundation under project no.7194 and project n\(_o\).P-2018-01-1257 and in part by the Scientific Centre of excellence for advance materials and sensor in Zagreb AIM (Attraction and International Mobility), project AIM1848704-3

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Spitaleri.

Additional information

Communicated by Alexandre Obertelli

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Spitaleri, C., Typel, S., Bertulani, C.A. et al. The \(^3\)He+\(^5\)He\(\rightarrow \) \(\alpha \)+\(\alpha \) reaction below the Coulomb barrier via the Trojan Horse Method. Eur. Phys. J. A 57, 20 (2021). https://doi.org/10.1140/epja/s10050-020-00324-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-020-00324-4

Navigation