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Abstract The observation in small size collision systems,
pp and pA, of strong correlations with long range in rapid-
ity and a characteristic structure in azimuth, the ridge phe-
nomenon, is one of the most interesting results obtained at
the large hadron collider. Earlier observations of these cor-
relations in heavy ion collisions at the relativistic heavy ion
collider are standardly attributed to collective flow due to
strong final state interactions, described in the framework
of viscous relativistic hydrodynamics. Even though data for
small size systems are well described in this framework, the
applicability of hydrodynamics is less well grounded and ini-
tial state based mechanisms have been suggested to explain
the ridge. In this review, we discuss particle correlations from
the initial state point of view, with focus on the most recent
theoretical developments.

1 Introduction

While the focus of the physics programme at the large hadron
collider (LHC) is the discovery and understanding of the
properties of the previously missing piece in the Standard
Model — the Higgs boson — and the search for its eventual
failure, it has also shown very surprising and unexpected
aspects of quantum chromodynamics (QCD), particularly in
small collisions systems, pp and pA. One of the most excit-
ing observations made in high multiplicity pp collisions by
the CMS collaboration during the first LHC run is the dis-
covery of the correlations between produced particles over
large intervals of rapidity, peaking at zero relative azimuthal
angle [1]. This phenomenon was dubbed ridge due its shape
in the azimuthal angle-rapidity plot, and constitute one of the
key findings at the LHC (see Fig. 1).

Later on, this structure was found by other collaborations
and for smaller multiplicities [2-5] and in association with
Z boson production [6]. A similar ridge structure was also
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observed in pPb collisions at the LHC by the four large
collaborations [7-10]. A maximum in the correlations also
appears at azimuthal angle m, called the away side ridge in
contrast to the near side ridge peaked at zero azimuthal angle.
They have also been observed in PbPb collisions, see e.g.
[11-13] for PbPb results and a comparison with those in pPb.
Similar correlations were observed in AuAu, d Au and >HeAu
collisions at the relativistic heavy ion collider (RHIC) [14—
19]. They have also been observed in photoproduction on Pb
in ultraperipheral collisions (UPCs) at the LHC [20]. Their
existence in smaller systems like e™e™ collisions [21] at the
large electron-positron collider and deep inelastic scattering
(DIS) events in ep at the Hadron-Elektron-Ringanlage [22]
has been scrutinised, but the results are not conclusive. The
ridge is the most striking feature in the long list of similari-
ties between small and large collision systems in the observed
results for many observables [23-27].

The standard explanation for such azimuthal asymme-
tries in heavy ion collisions (HICs) is the existence of strong
final state interactions that lead to a situation where viscous
relativistic hydrodynamics can be applied, see the reviews
[28,29]. The dynamics leading to such a situation, called
hydrodynamisation, is unclear [30] and both strong and weak
coupling explanations have been proposed, see e.g. [31]
and refs. therein. Furthermore, the hydrodynamic descrip-
tion seems to hold for large anisotropies, i.e. rather far from
local equilibrium.

The hydrodynamic description of the azimuthal asym-
metries in pp and pPb collisions at the LHC is successful
[29,32]. There is a hot ongoing discussion on the explanation
of such success and of the fact that hydrodynamics seems to
be the effective description for long wavelength modes in any
field theory, see e.g. [33] and refs. therein. But it demands a
very careful choice of initial conditions, specifically that the
proton is modelled as a collection of constituent quarks or
hot spots. The description seems to be pushed to the limit of
small collision areas and low particle densities where non-
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Fig. 1 Two particle correlations in pp and pPb collisions at the LHC
measured by the ATLAS Collaboration [2], for different energies and
particle multiplicities in the event. Taken from [2]

hydrodynamic modes play a very important role, as seen in
both hydrodynamic studies [29] and in those that consider a
weak coupling quasiparticle picture in transport frameworks
[34].

Therefore, the hydrodynamic explanation for the azimuthal
asymmetries in small systems looks tenuous. Besides, causal-
ity arguments show that long range correlations in rapidity
must come from the very early stages of the collision [35].
And hydrodynamic calculations demand initial conditions
that contains long range rapidity correlations, initial energy
and particle density and flow profiles and, unless they are
assumed to be completely washed out by final state interac-
tions, correlations. So, beyond addressing the obvious funda-
mental question: is the strong interaction dynamics capable
to lead to collectivity through final state interactions even
in small systems, or is the origin of the ridge correlations
different in pp and pPb collisions than in HICs?, searching
for correlations coming from the initial state is linked to the
understanding of the dynamics prior to the use of hydrody-
namics and to the provision of well grounded initial condi-
tions for hydrodynamic calculations.

This contribution is devoted to the description and discus-
sion of those frameworks which lead to correlations among
partons in the initial stage that, if not washed out by strong
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final state interactions and hadronisation — that we will
assume in the following, may lead to azimuthal asymmetries
as observed in data. We start by those based on the weak
coupling but non-perturbative description of dense partonic
systems offered by the the Color Glass Condensate (CGC)
effective theory, see the reviews [36—38] and the book [39].
This will be the subject of Sects. 2 and 3. We will then review
other explanations inspired in QCD in Sect. 4, to end with a
summary and discussions in Sect. 5.

Our focus will be on recent formal developments and we
will base the presentation in our own works and formalism,
trying to make connection with the other formalisms which
differ in notation. We will comment briefly on the status of
the comparison to experimental data in the summary.

2 Two particle correlations from the CGC

The observation of the ridge correlations in small size sys-
tems has triggered a lot of efforts to understand whether the
structure of the initial state itself can lead, in pp and pA col-
lisions, to such correlations without resourcing to final state
interactions. Over the last decade, several mechanisms have
been suggested to explain the ridge correlations in the CGC
framework. The two most successful ones are the “domain
structure of the target” developed in [40—42] and the “glasma
graph approach” introduced in [35,43,44].!

The underlying mechanism for the domain structure of
the target can be summarised as follows: the hadronic tar-
get is assumed to contain domains of oriented chromoelec-
tric fields in the transverse plane. When two partons (nor-
mally assumed to be gluons when the scattering takes place
at high energies and the probed values of momentum frac-
tion of the partons, x, is small) from the projectile are close
enough to scatter on the same domain, they get a common
final momentum that reflects the correlated structure of the
fields in the target. As gluons belong to the adjoint, thus real,
representation of the SU(N,) group, the correlation holds
for both parallel and antiparallel momenta, thus justifying
the near and away side structures. The size of the domain in
the target is assumed to be of order 1/Qj, with Q; being the
saturation momentum which is the characteristic transverse
momentum for the partons in the saturated target wave func-

! Apart from these two approaches, there are also other CGC-based
mechanisms to describe the two particle correlations from the initial
state. In [45,46], it is argued that long range rapidity correlations can be
explained by the spatial variation of the partonic density in the target.
On the other hand, in [47], the origin of two particle correlations is
explained through the rapidity evolution of dipole operators by breaking
the mean field approximation. Correlations in the hadron wave functions
as described in the CGC have been recently considered in [48] but
with the aim of providing initial conditions for hydrodynamic evolution
beyond simple energy, flow and particle density transverse profiles.
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tion described by the CGC [36-38]. Projectile partons lying
closer than 1/ Qg contribute mainly to particle production in
the region of transverse momentum pr 2 Q. Therefore,
this mechanism should mainly be applicable in that trans-
verse momentum region.

Note that this model implies a non-trivial target structure
that goes beyond the usual isotropic averages employed in
CGC calculations, see below. While still lacking justification
from first principles (although indeed CGC numerical calcu-
lations indicate that field correlations in the hadron wave
functions are characterised by length scales ~ 1/Q; [49—
51]), this explanation is often used for qualitative discussion
and understanding of numerical results, and may have further
implications on e.g. spin or Transverse Momentum Distribu-
tions (TMDs) physics. Numerical studies based on models
containing this domain structure have been performed in [52—
54]. They show correlations that go beyond leading number
of colours, see the discussion below, and lead to odd harmon-
ics, see Sect. 3.

On the other hand, the glasma graph approach to two par-
ticle correlations is very successful to describe many features
of the data as shown in [55-60], but the physics behind this
approach was not clear. This issue has been studied in [61]
and it has been shown that a genuine quantum effect, Bose
enhancement of the gluons in the projectile wave function,
leads to final state correlations in the glasma graph approach.”

The concept of Bose enhancement for a generic quantum
system can be understood by considering a state with fixed
occupation number, {n;(p)}, of N species of bosons at dif-
ferent momenta which, up to some normalisation factor, can
be written as

[ins o) o< [ [af 2] 100 1)

Lp

with a;f (p) the creation operator of the boson and i =
1,2,..., N. The mean particle density 7 is defined as the
expectation value of the number operator in this state:

i =(lni(p}| Y ala;@|im(pl) =Y nip). @
J Lp

The two particle correlator in momentum space C(p, k) is
defined in a similar way and can be calculated in a trivial
manner:

2 In [62,63] a collective behaviour and azimuthal asymmetries are
obtained for small systems in a perturbative framework as a consequence
of quantum interference and colour correlations. Spatial anisotropies
result into momentum anisotropies via multipole radiation patterns.
This approach, albeit formulated in a rather different language, shows
similarities with the glasma graph approach.

Cp. by = D] [ Y]
i J
L)Y [ni(p]’. 3)

The first term on the right hand side of Eq. (3) is the square
of the mean particle density and the second term is the Bose
enhancement term. It vanishes when the momenta of the
two bosons are different and gives an enhancement when the
momenta of two bosons coincide which is O(1/N), due to
the fact that it contains a single sum over the species index.
The physics behind this is the fact that only bosons of the
same species are correlated with each other.

Let us now describe how Bose enhancement arises in the
CGC and leads to final state correlations by considering the
double inclusive gluon production within the glasma graph
approach. In this approach each gluon is assumed to come
from a different colour charge density in the projectile wave
function that is rapidity invariant.> For our purposes, these
colour charge densities can be conveniently represented in
terms of gluon creation and annihilation operators in the
incoming projectile wave function. After averaging over the
target fields the glasma graphs can be written as sum of three
types of diagrams (see Fig. 2).

Type A diagrams describe the case when two gluons
with transverse momenta k; and kj scatter independently
on the target, acquiring transfer of transverse momentum
p — k; and q — k, so that the outgoing gluons have trans-
verse momenta p and q. Type B and Type C diagrams include
interference contributions which are also interesting to study
but, for now, let us focus on the Type A contribution and
show how the Bose enhancement effect can be observed by
studying these diagrams alone. The Type A contribution to
the double inclusive gluon production can be written as

d*k; d*k,
(2m)? 27)?

I A S N T <4
x[a”‘ - 1—21] [sﬂ - %}N(p — ki) N(q — ko),

P
“)

Type A = (inla’ (k1)a}’ (ka)ak (k1)a) (ky)lin)

where |in) is the wave function of the incoming projectile and
N (p — k) is the dipole scattering amplitude — the scattering
amplitude for a two gluon system to scatter on the target.
Moreover, the rapidity dependence of the gluon creation and
annihilation operators is integrated over. The explicit depen-
dence on rapidity becomes important only when the rapidity
difference between the observed particles is parametrically
large, An 2 1/a.

3 These two assumptions are justified at high enough energy or at small
x where the colour charge density is high so gluons can be treated
semiclassically, and they have evolved radiation tails that populate phase
space uniformly in In 1/x.
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Fig. 2 Glasma graphs for two gluon inclusive production before averaging over the projectile colour charge density p. Black blobs denote vertices
and dashed lines the cuts separating the amplitudes (to the left of the cut) from the complex conjugate amplitudes (to the right). Taken from [61]

The evaluation of the expectation value of any operator in
the incoming projectile state requires a two averaging proce-
dure in the CGC. In [61], averaging over the valence colour
charge density is performed first which leads to the density
matrix operator p on the soft gluon Hilbert space. Then, the
second averaging over the soft gluons is performed using
this density matrix operator. The two particle correlator that
appears in the Type A contribution calculated with this pro-
cedure leads to the following result:

KKK kKD g4 (ki) p? (ko)
2 2 21,2
k1 k2 kl k2

C(ki, ko) = ST(NZ = 1)

2 —
x{1+SL(N3_])[5 (ki — k)

+5@ (ki + k)| }
®)

where S, is the transverse area of the projectile. The first
term on the right hand side of Eq. (5) is the classical term
which corresponds to the square of the number of gluons,
while the second term is the typical Bose enhancement term,
relatively suppressed by the number of states in the adjoint
colour representation.

If we consider a situation where the incoming projectile
has intrinsic saturation momentum Q, and the momenta of
the produced gluons are also ~ Qg i.e. |p| ~ |q| ~ Qj, then
the production amplitude is dominated by the contributions
|ki| ~ |kz| ~ Q. The initial state correlations are encoded
in the Bose enhancement terms in Eq. (5), which are delta
functions. The interaction with the target is obtained by con-
voluting the two particle correlator with the dipole ampli-
tudes N(p — k1)N(q — kz). Since, in this kinematics, the
momentum transfers from the target (|p — k1| ~ |q — k2| <
Q) are small and the Bose enhancement terms involve delta
functions, these initial state correlations naturally transform
into angular correlations between the produced gluons in the
final state. In a more general case, the delta functions, which
are an artefact of considering a translationally invariant pro-
jectile, are smeared when convoluted with the dipole scat-
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tering amplitudes but this should not completely destroy the
final state angular correlations.

The immediate question that arises after the study of glu-
ons is whether quarks are subject to correlations in the CGC.
This question has been posed in [64] where the correlations
between the produced quarks were studied. The resultsin [61]
show that the origin of the correlations between the produced
gluons is the Bose enhancement of the projectile gluons. Due
to their fermionic nature, one expects quarks to experience
Pauli blocking which effectively amounts to a suppression of
the probability of finding two quarks with the same quantum
numbers in the CGC state. Therefore, one should expect a
negative correlation between the final state quarks that origi-
nate from the initial state ones. On the other hand, the correla-
tion between the gluons is found to be long range in rapidity
since the CGC wave function is dominated by the rapidity
integrated soft gluon field. Thus, another important question
to answer is: are the (anti)correlations between the final state
quarks long or short range in rapidity? The answer to this
question is not obvious a priori. In the projectile wave func-
tion, quarks are produced via splitting of the rapidity invari-
ant gluons into quark-antiquark pairs. However, the splitting
amplitude itself depends on the rapidity of the quark and anti-
quark. Moreover, due to this splitting in the projectile wave
function the expression for the production cross section of
quarks is much more complicated compared to the one for
gluons. These questions are answered in [64] where it was
shown that the initial state correlations between the quarks
in the projectile wave function are not distorted by the small
momentum transfer from the target in specific kinematics.
In these kinematics, the rapidity difference between the pro-
duced quarks is relatively large, i.e. n1 — n2 > 1. More-
over, a large contribution comes from the situation where the
transverse momenta of the produced quarks p and q are of
the same order and much larger than the saturation scale of
the projectile Oy, and the saturation scale of the projectile
is much larger than saturation scale of the target Qr, i.e.
[pl ~ |q| > Qg > Q7. Then the contribution to the pro-
duction cross section that is sensitive to correlations has the
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Fig. 3 Glasma graph diagrams (after averaging over the projectile
colour charges) that lead to HBT correlations. Taken from [67]

following behaviour (see Egs. (3.19) and (3.20) in [64] for
the full expressions):

do

Lpdn L2qdm | _[ei(mﬂm(m N '72)2]' ©

corr.

The negative sign of this contribution shows that it suppresses
the classical term as opposed to the gluon case. This is the
result of the Pauli blocking effect in quark-quark production.
Moreover, this effect decays exponentially with the rapidity
difference between the two produced quarks, which shows
that it is short range in rapidity. However, this exponential
decrease is tempered by two powers of the rapidity difference.

Besides, there is another physical effect present in the
glasma graph approach which is referred to as the Hanbury—
Brown-Twiss (HBT) correlations between the produced glu-
ons* [67]. The diagrams in the glasma graph approach that
lead to HBT correlations are those in Fig. 3 after performing
pair wise contraction of the colour charges in the projectile
wave function. Assuming a translationally invariant projec-
tile wave function, the contribution from Type B and Type C
diagrams to the production cross section is

Type B o< 8 (p — q), TypeC o 8@ (p + q). )

If the translational invariance condition is relaxed, then the
delta functions are smeared over a scale of the inverse size
R~ of the projectile: |p & q| ~ R™'. This size R represents
the radius of the gluon cloud inside the proton and its inverse
is smaller than the saturation scale, R~! < Q;. Moreover, it
is also shown in [67] that the HBT correlations are long range
in rapidity just as the Bose enhancement effect. Thus, the
strength of the HBT correlations is equal when the rapidities
of the two produced gluons are similar (7] =~ 7,) or when
the difference between them is large (|n1 — 2| > 1).

To sum up, the correlation function C(p, q), formally
defined as the ratio of double inclusive gluon production cross
section to the square of the single one, in the glasma graph
approach contains two physical effects and can be written as
follows:

4 HBT correlations are studied in [65,66] in the ky factorisation
approach.

----- Bose Enhancement (BE)
HBT

~
~
~~.
~ea

Fig. 4 Schematic separation in ¢ (here the modulus of the difference
in transverse momentum between the produced gluons) between the
contributions to the HBT effect (solid line) and to the Bose enhancement
effect (dashed line) in the two particle correlation function. Taken from
[67]

CE.0=1+CP.a) _+Cp.) ®)

HBT

The first term on the right hand side of Eq. (8) is the clas-
sical contribution which originates from the square of sin-
gle inclusive production. C(p, q) |BE represents the effect of
Bose enhancement of the gluons in the projectile wave func-
tion. As described above, this effect leads to a correlation of
the final state gluons. On the other hand, C(p, q) |HBT rep-
resents the HBT correlations in the glasma graph approach
which directly introduces correlations between the final state
gluons. Both C(p, q) | pg and C(p, q) | pet are rapidity inde-
pendent, therefore long range in rapidity. The Bose enhance-
ment contribution is suppressed by the transverse area of the
projectile with respect to the HBT contribution (actually by
the number of “sources” Q?S '1). However, it leads to corre-
lations whose width in momentum space is determined by
the saturation momentum Qg. On the other hand, the HBT
contribution is not suppressed but it gives a narrow peak in
momentum space with width R~!. This comparison is shown
in Fig. 4.

In the explicit calculations in the glasma graph approach
to double inclusive particle production,’ the averaging over
the target configurations that leads to the dipole scattering
amplitude is performed expanding this amplitude to the low-
est non trivial order in the target field strength, correspond-
ing to two gluon exchange between the gluons in the pro-
jectile wave function and the target. The dipole scattering
amplitudes N (p — k1) and N(q — k») introduced in Eq. (4)
are assumed to originate from single pairs of target fields
and therefore this approach does not take into account the
effects of multiple scatterings in a dense target. Therefore,

5 Three and four gluon inclusive production are considered in [68,69]
within the glasma graph approach.
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this approach is only valid for pp collisions®. In [70], the
inclusive production of two and three gluons is computed
beyond the glasma graph approach by including the multiple
scattering effects, which extends the validity of the glasma
graph approach from pp to pA collisions.”

Apart from taking into account the multiple scattering
effects in [70], a systematic way to identify each term in
the double inclusive gluon production cross section and to
characterise whether it is a Bose enhancement or HBT con-
tribution is introduced. This identification is performed by
adopting the following strategy. When calculating the dou-
ble inclusive gluon production, one has to average over four
colour charges (two in the amplitude and two in the com-
plex conjugate amplitude) in the projectile wave function:
(0 (x1)p™ (x2) 0" (y1) " (y2)) p. Here, (xi. a;) and (i, bi)
stand for the transverse position and colour indices of the
colour charge densities in the amplitude and in the com-
plex conjugate amplitude, respectively. The averaging over
the colour charge distributions in the projectile is commonly
performed by using a generalised McLerran—Venugopalan
(MV) model [73,74] where the weight functional is Gaus-
sian. Then, the average of any product of colour charge den-
sities factorises into a product of all possible pair, Wick-like
contractions. The correlator of two colour charge densities
in momentum space can be defined as

(" ®)p" @) p = 51> (k, ). ©)
The function u?(k, p) characterises the structure of the pro-
jectile. It can be written as

k —
Wk, p) = T(TP>F[(k+p)R], (10)

where F [(k +Pp)R ] is a soft form factor with maximal value
F(0), and R is the radius of the projectile. Function T
defines the transverse momentum dependent distribution of
the valence charges. The soft form factor identifies whether a
term is a contribution to the Bose enhancement of the projec-
tile gluons or a contribution to the HBT correlations of the
produced gluons. For example, in our set up the produced
gluons have momenta p and q, while the projectile gluons
carry transverse momenta kj and kj. In this case, uz(p, qQ)
gives a maximal contribution when p + q = 0 which clearly

6 The previously discussed conditions in the projectile of large colour
charge and rapidity independence of the gluon distribution are assumed
to hold in pp.

7 This extension is studied numerically in [71], and also analytically in
[72]. The main difference between the latter and [70] is the computation
framework. Two gluon correlations in [72] are computed within the k7 -
factorised approach which is difficult to generalise to three or more
particles. Moreover, the results of [72] are valid only in the large N,
limit as opposed to the results in [70] which are valid for finite N,. In
this sense, [72] can be considered as the first attempt to generalise the
glasma graph approach to two gluon production from pp to pA.
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can be identified as the HBT correlations of the produced
gluons. uz(kl, k) is peaked when k; 4 ky = 0 which is a
contribution to the Bose enhancement of the gluons in the
projectile wave function.

On the other hand, multiple scattering effects on the dense
target are taken into account by introducing the standard Wil-
son lines in the CGC framework. In this framework, the inter-
action between the projectile and the target is assumed to be
eikonal which amounts to the situation where each parton
produced by the projectile colour charge scatters on the tar-
get by picking up a colour rotation described by a Wilson line
which is defined as an exponential of the target field ordered
in the x™ coordinate:

Ur(x) =Py ¢i8 [ dxT TR Ay (™) an

at the amplitude level. Here, T, is the SU (N,) generator in
the representation R which can be the fundamental one for a
quark and the adjoint one for a gluon. This leads to the appear-
ance in the cross section of double dipole and quadrupole
amplitudes (in the adjoint representation) of the type

(s(x,y)s(z. w))r, (QX.y.2z,W)r, 12)

which have to be averaged over the target field distributions.
The dipole and the quadrupole operators are defined as

s(X,y) = w[UU ()], (13)

N2 -1

c

O(X,y,2, W) = ﬁtr[U(x)UT(y)U(z)UT(w)]. (14)
c
The cross section has to be integrated over four transverse
coordinates. In principle, the maximal contribution should
come from the area in coordinate space, i.e. when all the four
coordinates are far away from each other. However, all four
points cannot be far away from each other since the target
field ensemble has to be colour neutral, and colour neutralisa-
tion in the CGC happens on scales of order 1/ Q. Therefore,
the maximal contribution to the integral must come from the
configurations where the four points are combined into pairs,
such that each pair is a singlet and the distance between the
pairs is large. This is the leading contribution in 1/( Q? R?) to
the integral on transverse coordinates® — not, by any means,
a good representation of the target averages of ensembles of
Wilson lines by themselves. Taking into account only such
configurations is equivalent to calculating the target aver-
ages of products of any number of Wilson lines by factoris-
ing them into averages of pairs with basic Wick contraction.
In this case, target averaging of the double dipole and the
quadrupole amplitudes can be written as

8 An equivalent reasoning based on colour neutralisation at large dis-
tances can be found in [65,66].



Eur. Phys. J. A (2020) 56:215

Page 70f 17 215

(k2 — )@ Q1 —q) (k= ) Q O (k2 — )
k1 E k1
@ - : @
k’Q E ]{72
@R ! W)
q2 q1 I q1 q2

Fig. 5 Momentum assignment for the double inclusive gluon produc-
tion. The grey blobs represent the colour charge densities in the projec-
tile wave function. q; and q, are the transverse momenta transferred
from the target during the interaction

(Q(X7 Y.z, W))T ~ d(X7 Y)d(l, W) + d(X, W)d(l, Y)

1
+ﬁd(x, z2)d(y, w), (15)

c

(s(x,y)s(z, w))r ~ d(x,y)d(z, W)

+ [d(x, w)d(z,y)

1
Nz =172
+d(x, d(y. W) (16)

where we have defined d(x, y) = (s(X, y))7. Then, by using
the function p?(k, p) given in Eq. (10) for the projectile
colour charge density correlators and using the factorisation
ansatz described above for the double dipole and quadrupole
amplitudes, the double inclusive gluon production cross sec-
tion is computed and the nature of all the terms is identified.
Moreover, it is also shown that the contributions to final state
correlations comes from the quadrupole terms in two gluon
production.’

3 Odd azimuthal harmonics from the CGC

To describe one key existing problem in usual CGC calcu-
lations, namely the absence of odd harmonics, let us briefly
discuss double inclusive particle production in more depth.
Within the approximations described in Sect. 2, double inclu-
sive gluon production is computed in pA collisions in [70].
The production cross section of two gluons with rapidities 7
and 77, and transverse momenta k; and k; (see Fig. 5) reads

do
d?k dn1d?kod

o[ dqp d’q

222
= m? =0 [ 55 oS

d(qp)

1 1
d Ip + I+ L+ (k —k3),
x ((Iz){o N2 (Ng_l)zz} (ky = —k2)
(17

9 A comprehensive study of gluon-gluon, quark-quark and quark-
antiquark correlations in pA collisions is also performed in [75,76].

where

1
lo = gﬂz(kl —ai, a1 — k) (ko — @2, @2 — ko)

x L' (ki, q)L' (ki, q1) L/ (ka, q2) L7 (k. q2),  (18)
I =p? ki —qi, @2 — ko) (ko — @2, q1 — ki)

x L' (ki, q) L (k1. q1) L/ (ko, q2) L7 (k2. q2)

+ 12 (k1 —q1, q1 — ko) 1P (ka — q2, @2 — ki)

xL'(k1, q) L (k1, q2) L' (k2. q) L/ (k2. @), (19)
L=’k —qp, q — ki) 1P (ka — qo, q1 — ko)

xL'(ki, q1)L' (k1, q2) L’ (ka, —q1) L’ (k2, —q2)

+P ki — q1. g2 — ko) ¥ (K1 — @2, q1 + ko)

xL'(k1, q) L' (1, —q2) L’ (k2, —q1) L’ (k2, q2).

(20)

Here, function ,u2 defines the structure of the projectile,
Eq. (10). On the other hand, function L’ (k, q) is the eikonal
Lipatov vertex which is defined as

i _k-q@' K

L'k, q = k—q? K (21)
Note that, as discussed in Sect. 2, all correlations are sublead-
ing in 1/N, which is due to the use of Gaussian averages —
the MV model. Moreover, the double gluon inclusive produc-
tion cross section is written in terms of the dipole averages
assuming translational invariance of the target (a standard
approximation which is reasonable in pA for large nuclei):

d2q1 @e—im-m-ﬁ-i(v-m
(2m)? (2m)?

1 t+4a
xd(%)a@ml — ). (22)

A convenient way to study two particle correlations is
through a Fourier decomposition into harmonics defined in
for the azimuthal angle A¢ between the produced gluons with
transverse momenta k; and k,. When Fourier expanded, the
double inclusive gluon spectrum Eq. (17) can be written as

d(x1,X2) =

N(ky, kz, Ap)
= ap (k1. k2) [1 + 3 2Vaatki k) cos(nmp)} SNC)
n=0
where

Jo Nk, ka, Ap) cos(nAgp)d Agp
Jo' N(ki. kz. Ap)d A

Vaatky, kz) = 24

One way of defining the pr dependence of the Fourier coef-
ficients is by fixing one of the momenta (k; = prTef ), and
treating the other one as a free variable (ko = pr). With this
choice, the azimuthal harmonics are defined as

@ Springer
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Voa(pis 0

vn(pr) = T a——
Y, Vaa(p; » Pr )

The key theoretical problem for the description of the two
particle correlations within the CGC is the absence of the
odd harmonics. This problem is analyzed in [41], and it is
shown to be due to the symmetry (k; — —Kkj;) of the double
inclusive gluon production cross section Eq. (17) which is
also referred to as the “accidental symmetry of the CGC”.

Three ways'? have been proposed to solve this problem. !
On the one hand, the projectile and target can be characterised
by a more involved structure than that considered in the usual
MYV averages [40—42,52-54].

On the other hand and as discussed previously, within the
CGC framework each produced gluon originates from a sep-
arate colour charge density in the projectile wave function as
shown in Fig. 5. The contributions to the projectile wave func-
tion that emerge from merging of the gluons before the inter-
action with the target or splitting of a gluon into two gluons
emitted from the same colour charge density, are not taken
into account in the standard CGC calculations. Recently, in
[80,81] it is shown that the accidental symmetry of the CGC
can be broken by including such corrections to the projectile
wave function. The even and odd parts of the double inclusive
gluon production cross section under the accidental symme-
try are computed separately, and finally, the azimuthal har-
monics are calculated. The corresponding numerical studies
and a comparison with data are performed in [82,83].

Finally, inclusive gluon production is usually studied
within the eikonal approximation in the CGC framework.
In recent studies [84,85], it is shown that the accidental sym-
metry can be broken by going beyond this eikonal approx-
imation. In the next subsection, we introduce a systematic
way to include subeikonal corrections in CGC calculations
and show how these corrections give rise to non-vanishing
odd harmonics.

(25)

3.1 Subeikonal corrections in the CGC

In inclusive gluon production at central rapidity in pA col-
lisions, both the projectile and the target are highly ener-
getic since they are boosted from their initial rapidity to
the central rapidity where the collision occurs. Therefore,
in this case both colliding objects can be treated in the CGC

10 Here we refer to gluon production which is the dominant mechanism
at small x or high energies. Quarks, obeying Fermi-Dirac statistics
and belonging to a non-real colour representation, can give rise to odd
harmonics as investigated in [60,77,78].

11 Besides, the role of the centrality or multiplicity event selection for
the breaking of the accidental symmetry and the appearance of odd
azimuthal harmonics has been analysed in [79].

@ Springer

framework. This corresponds to defining the projectile by the
colour charge J/ (x),

Ji ) = 8T8 (x ) pa (%), (26)
and the target by the colour field A% (x) that is given as
Al (x) = 87 8(x )AL (x). (27)

Let us recall that these expressions of the colour charge of the
projectile and the colour field of the target are defined within
the eikonal approximation, which is justified by the large
energy of both colliding objects. If for the dilute projectile
the eikonal approximation can be trusted at a given energy,
the same approximation for a large target can be true only
for larger energies. The eikonal approximation for the target
amounts to the following three conditions:

1. Ab() ~ 8"~ A, (x): Neglecting the (+) and transverse
components of the colour field of the target.

2. Al (x) ~ Al (x*,x): Neglecting the x~ dependence in
the colour field of the target.

3. AH(x) o 8(x™): Assuming that the target field is peaked
around x* = 0 due to Lorentz contraction, which is also
known as the shockwave approximation.

In realistic kinematical conditions under which the experi-
ments are performed, the energies are not asymptotic and the
eikonal approximation is not always justified. While for a
dilute projectile it is usually valid even for high energy colli-
sions, this is not necessarily true for a large nucleus. Relaxing
any of the above approximations accounts for corrections to
the eikonal limit. In [86,87], a systematic method to com-
pute the corrections to the eikonal limit by relaxing the third
approximation is developed. This corresponds to treating the
colour field of the target with a finite longitudinal support
L™ along the x* direction, thus replacing Eq. (27) by

A (x) = 8" AL (x, x). (28)

Such subeikonal corrections are thus subleading with respect
to the infinite Lorentz contraction of the target.

Before discussing the results, let us give a brief sketch of
the method employed to derive the non-eikonal corrections.
Let us consider the production of a single gluon with trans-
verse momenta k and longitudinal momenta k™ in pA colli-
sions at central rapidity. The dilute projectile is still treated in
the eikonal approximation and defined with the charge den-
sity JA(x) given in Eq. (26). On the other hand, the eikonal
approximation is relaxed for the dense target that is defined
by the colour field A% (x) given in Eq. (28) with a finite sup-
port from O to L™ in the longitudinal direction. In this case,
the production cross section can be written as the square of
the gluon production amplitude averaged over the projectile
and target distributions and integrated over impact parameter
B:



Eur. Phys. J. A (2020) 56:215

Page 9of 17 215

4 do 2 a 2
W = fd B2A:<<|MA(I£, B)| >P>T' (29)

Here, A, a and k = (k*,Kk) are the polarization, colour
and momentum of the produced gluon!?. For a target with
finite longitudinal width, the gluon production amplitude
M K (k, B) is composed of three different contributions: gluon
production before, while and after the projectile propagates
through the target. At leading order, it is possible to relate
the total gluon production amplitude and the background
retarded gluon propagator by using the LSZ reduction for-
mula and the perturbative expansion of the colour field of
the target [88]. In the light cone gauge AT = 0, the total
gluon production amplitude can be written in terms of the
(i—) component of the background retarded gluon propaga-
tor G’ (x, y) as

M (k,B) = €*(2k") lim / d’x / dx~ e
xt—0
X / d*y Gy (x, )ab I, (7). (30)

Since the colour field of the target is independent of x —, one
can introduce the one-dimensional Fourier transform of the
background retarded gluon propagator and write it in terms
of of the background scalar propagator Q]’:f (x, y). Then, the
(i—) component of the retarded background gluon propaga-
tor reads

. dkt . -
GZR ()C, y)ab Z/‘?e ikt (x y)
. _oab

Xmayzngr()_ﬁZ)- (€29

The background scalar propagator g;jjz (x, y) satisfies the

scalar Green’s equation whose solution formaﬁly can be writ-
ten as a path integral

z(xT)=x
G (x. y) = B — y) / [Da(cH)]
z(yt)=y
Wt AR b
xe Z Jyt 4 N Uk (x+,y+; [z(z+)]),

(32)
with the Wilson line
U (x+, NS [Z(z+)])
x+ ab
=Py exp {ig/ dztTC A7 <Z+, Z(z+)>} (33)
y+
following the Brownian trajectory z(z™"). In the limit of van-

ishing longitudinal width, x™ — y™ — 0, the background
scalar propagator g,‘:f: (x, y) reduces to the standard Wilson

12 Hereafter, we use the underline notation to indicate that for coordi-
nates x = (x*, x) and for momentum k = (k*, k).

line introduced in Eq. (11) and one recovers the eikonal limit.
Therefore, it can be safely concluded that all the non-eikonal
effects that are due to the finite longitudinal width of the tar-
get are encoded in the background scalar propagator. This
also means that an expansion of g]’:f (x, y) can be performed
in terms of an eikonal parameter, with the first term in this
expansion corresponding to the eikonal limit and higher order
terms to the corrections to this limit.

In order to perform an eikonal expansion of the back-
ground scalar propagator Q]‘:f (x, y), one should first discre-
tise the scalar background propagator. In the eikonal limit,
kT /(xT — yT) is much larger than any transverse scale in
the problem. In the large k™ limit, it is natural to consider a
generic path as a perturbation around the classical free path,

Z, = zzl +u,, (34)

where the transverse positions at step n are on the straight
line

cl n
_ 35
Zn—Y+N(X y) (35)

between the initial and final points, and the perturbation u,,
satisfies the boundary conditions uy = uy = 0 with N being
the number of discretised steps. Once the expansion around
the free classical path is performed for fixed initial and final
positions, one should perform another expansion for small
X —y, since x — y is parametrically small in the large k™
limit. After performing these two expansions up to second
orderin (x T —y™) —the finite longitudinal width of the target,
the scalar background propagator Ql‘ji’ (x, y) reads

/ d*xe KX G (x, y)
=0(xT — yH)e kY 0Ty {U(x+, YY)
(x+_ +) L
+k—+y[klU[lo,1](x+,y+;)’)
i
+§U[1,o](x+,y+;y)]
ot —yh)?
(k*)?
i + t 1 + . ab
KUy y) - Upo@ Ty ,Y)“ .
(36)

+ (KU (F, 55 y)

The first term on the right hand side of Eq. (36) is the standard
Wilson line defined in Eq. (11). O[(x T — y)/k™ ] terms are
the first order corrections to the strict eikonal limit which
we refer to as next-to-eikonal (NEik) corrections. Similarly,
O[(x*—y™)?/(k™)?] terms are the second order corrections
and they are referred to as next-to-next-to-eikonal (NNEik)
corrections. The terms that are denoted as Uy gj(x+, yT; y)
are the decorated Wilson lines which only appear beyond
strict eikonal order. The first subscript @ in the decorated

@ Springer
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Fig. 6 Diagrams that contribute to the computation of the Lipatov vertex. The black blob represents the Lipatov vertex which is the sum of all real
diagrams for gluon production shown on the right hand side of the equation. Taken from [84]

Wilson lines stands for the order of expansion around the
classical path while the second subscript 8 stands for the
order of the expansion around the initial transverse position
y. The reason why these objects are referred to as decorated
Wilson lines is related with their structure. These objects
involve a background field insertion into the standard Wil-
son lines along the +-direction in a given +-coordinate. For
example, the first decorated Wilson line is defined as

. b xt + _ t
i + .o Y +Z y
[Vionetv*:w)] ‘/y+ sl ——

x Ut 2 Fyplig T8 0 AL T ] U ET, vty (37)
The other decorated Wilson lines have similar structure with
one or more background field insertions. We do not present
the structure of all the decorated Wilson lines due their com-
plexity and lengthy expressions (see [87]). One can easily
get the expression for the gluon production amplitude at
NNEik accuracy given in Eq. (30) by using the expression
of the retarded background gluon propagator Eq. (31) and
the expression derived for the background scalar propagator
Eq. (36).

As discussed above, the retarded background gluon prop-
agator G’fev (x, ¥)ap and, therefore, the scalar background
propagator g;;ﬁ (x, y) are the main building blocks for com-
puting cross sections in high energy p A collisions. In[86,87],
these propagators were used to calculate the single inclusive
gluon production cross section in pA collisions at NNEik
accuracy. The same formalism can be adopted to compute
double inclusive gluon production and hence the azimuthal
harmonics in pA collisions [84,85].

In [89], the results of the single inclusive gluon production
cross section at NNEik accuracy in pA collisions are used to
study the weak field limit (i.e. glasma graph approximation)
of this result which corresponds to single inclusive produc-
tion in pp collisions. In this limit, the decorated Wilson lines
are expanded to first order in the background field of the tar-
get A, (z*,y). For example, the first decorated Wilson line
given in Eq. (37) reduces to

+
Ui RN ’ *
o0& YY) | —

v+ xt —yt
x [ig TG, 0iAZ (2T 9]  (38)

@ Springer

This simplification allows us to calculate the Lipatov vertex
at NNEik accuracy. After expanding the eikonal and non-
eikonal terms to first order in powers of the background field,
which corresponds to the glasma graph approach in usual
CGC calculations, the Lipatov vertex at NNEik accuracy can
be written as

‘ k—-q' K
Lingi k. q; xT) = [m -5
K2 1/ K2 2
. N .
X{1+12k—+)€ _§<_2k+x > }

(39)

The first term on the right hand side of Eq. (39) corresponds
to the strict eikonal limit, thus it gives the eikonal Lipatov
vertex defined in Eq. (21). The second and the third terms are
the NEik and NNEik corrections respectively. The structure
of the vertex suggests that the corrections to the amplitude
due to finite width of the target may exponentiate.

This observation is further studied recently in [84] where
it was shown that indeed the non-eikonal corrections due to
finite longitudinal width of the target in the weak field limit
exponentiate and can be written as modified Lipatov vertex.
By computing the corresponding three diagrams (see Fig. 6)
at the amplitude level and keeping the phase ¢F " which is
taken to be one in the eikonal limit, the non-eikonal Lipatov
vertex that accounts for all order corrections to the eikonal
limit due to finite longitudinal width of the target in the weak
field limit reads

‘ k=@ KT e
L&Ol’lEik(ks q; x+) = [m _ ﬁ L (40)
where k= = k?/(2k™). This structure was observed in the

context of jet quenching in [90-92] previously, however the
identification of this building block for its use to include non-
eikonal corrections in CGC calculations is done in [84] for
the first time, further illustrating the close relation between
CGC and jet quenching calculations [88].

It is now straightforward to compute the non-eikonal sin-
gle inclusive gluon production in pp (i.e. dilute-dilute) col-
lisions which formally reads

do NonEik

d’kdn dilute

d*qi d*qm
(27)% (27)?

=4mo; Cy g / dux doxy
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< 8A (L an AL (5. q), 1’k — 1. q2 — K]

X Liyongik k+ Q15 X7 Lok (k. @23 x5). 41)

An additional modification that is needed to account for the
finite longitudinal width of the target is to adopt a modified
expression for the correlator of two target fields. Motivated
by the non zero longitudinal extent of the target, the fields
can be located at different positions that are separated by the
colour correlation length in the target A™. In this case, the
two target field correlator reads

; 1
—(xF —(xF € it
(A7 aDAZ (57, @)y = 8 n(x)) ETEs

x O(AT — xf = x71) @m)*8P (q1 — q) la(qn)I*,
(42)

where function n(x™) defines the one-dimensional target
density that we take as constant, ng = n(x+) for0 < x* <
L™, and 0 elsewhere. Moreover, function a(q) is the poten-
tial in momentum space which can be taken to be of Yukawa
type, i.e. la(q)|* = m?/(q*> + m?)? with m being the Debye
screening mass or inverse colour correlation length. In the
eikonal limit, when A+ — 0 for a constant potential and con-
stant one-dimensional target density, one recovers the stan-
dard MV expression for the two target field correlator. Using
Eq. (42) one can integrate over the longitudinal coordinates
that appear in the phases in non-eikonal Lipatov vertices. The
final result of the non-eikonal single inclusive gluon produc-
tion cross section in pp collisions then reads

NonEik

do
=47 Co(N? — 1) g2GNE(k—: )

d?kdn

dilute

d’q ,. ,~ ,
8 / W k- g a K] Lk gL'k @) lat@)”
(43)

where we assume that the longitudinal width of the target is
much larger than the colour correlation length, AT <« LT,
In the cross section, Eq. (43), all the non-eikonal effects are
encoded in the function Q{\IE (k~; A1) which is defined as

GNE(k—; 2ty = sin(k~A 1), (44)

k=at
withk~ = k?/2k*. In the limit of vanishing (k~A7) we have
lim GNE(k—;AT) =1, (45)
k=xt—0
and the well known eikonal limit for the single inclusive
gluon production in the dilute target limit is recovered. There-
fore, function G %\IE (k—; AT) canbe interpreted as the function
that accounts for the relative importance of the non-eikonal
effects with respect to the eikonal limit of the single inclusive
gluon production in the dilute target limit.

In Fig. 7, the ratio of the non-eikonal to eikonal sin-
gle inclusive gluon production cross sections, i.e. function

1.00 -

— k=1GeV
k =2 GeV
0.85¢ — k=25GeV |
080 Il 1 1 L 1 1 Il

1.0 1.5 2.0 2.5 3.0 3.5 4.0
n

Fig. 7 The ratio of non-eikonal to eikonal single inclusive gluon pro-
duction as a function of the rapidity of the produced gluon for different
values of its transverse momenta at fixed correlation length AT = 0.5
fm. Taken from [84]

QFE (k=; A1), is plotted as a function of rapidity for differ-
ent values of the transverse momenta of the produced gluon
at correlation length A+ = 0.5 fm. The results show that with
increasing rapidity of the produced gluon, the effects of the
non-eikonal corrections vanish as expected from analytical
predictions. Up to rapidity n = 2.5, the relative importance
of the corrections varies between 15 and 2% depending on
the value of the transverse momenta.

Non-eikonal double inclusive gluon production cross sec-
tion in pp scattering can be computed in a similar manner.
The main difference between the single and double inclusive
production is that one needs to compute the target average
of the four field correlator. This can be accomplished by fac-
torising the average of the colour fields of the target into all
possible Wick contractions which can be written

(A, 7 qDA, (0 @) A; (5 @) Ay (] . qa)),
=(A; (L anA, (5, @) (A7 (F L a) AL (5. qw)),
HAL & anA; (. q0))(AD 6L @) A, (5. ),
HA; 0 aDA; (5. @3)) (A, 0 a) A (6 q)),
(46)

where each two target field correlator is defined in Eq. (42).
The integrals over the longitudinal coordinates can be per-
formed using this definition and the final result for the non-
eikonal double inclusive gluon production cross section in
pp scattering can be organised in the following way:

NonEik

do
=a? @) gt CI(N? - 1)

d?kydnidPadn | e
d’q d*qp
(2m)? (2m)?

1
(0) (1) O]
X{IZtr + ch 1 [IZtr + Iltr:l}’

la(q)Pla(@)?GNE ks AHGNE(ky s 1)

(47)
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where the subscripts denote the single trace terms (/ 1(:3
the double trace term (Iz(ir) ) which are analogue to double
dipole and quadrupole operators in pA scattering discussed
previously. The explicit expressions for these contributions

read

) or

1Y = 12k — a1 a1 — ki ]2 [ke — @0, 2 — Ko

x L' (ki, q1)L' (k1, q1) L (K2, @) LY (K2, q0),

(48)
15y = ARk kg Lk - ar @2 — k]

xu?[ki —qr. @2 — ki L (ki q1)L (k1. q0)

<L (ko @)L (o A | + ky > —ky)  (49)

and, finally,

Il(tlr) = {Mz[kl —q1. @2 — ko ]u[ka — @2, q1 — k]
x L' (ky, q) L (ky, q1) L7 (k2, @) L7 (ka, q2)
+ONE KT ks L) [ 2k = an a1 — ko]

1
xu?[ka — @2, q2 — ki ] + Eﬂz[kl —q1,q2 — ko]
xpi[a2 — ki, ar — ko] | L'k, a2 (ki o)

<L (k. gL G q) | + Uy = k). (50)

In this setup (see Fig. 5), k1 — q; and ko — q3 are the
transverse momenta of the two gluons in the projectile, k|
and kj are the transverse momenta of the produced gluons
in the final state, and q; and q; are the transverse momenta
transferred from the target to the projectile during the inter-
action. By using the definition of function 12 (p, k) given in
Eq. (10) and the behaviour of the soft form factor, one can
easily identify each term in the non-eikonal double inclusive
gluon production cross section given in Eqgs. (48), (49) and
(50). Clearly, the term in 12(3) corresponds to the square of the
single inclusive production and does not give any contribu-
tion to the correlations. The terms in 12(t1r) corresponds to the
Bose enhancement of the target gluons since the soft form
factor is peaked around q; = (. Finally, the terms in Il(tlr)
contribute to the HBT correlations of the produced gluons
and to Bose enhancement of the projectile gluons.

In the non-eikonal double inclusive gluon production cross
section, two functions appear that account for the non-eikonal
effects: g{‘IE (ki A1) presented in Eq. (44) and a new func-
tion gg”i (ki k5 s L7). This new function is defined as

GNE (k35 L)
- - 2
= {(k_ Zk_)L+ sin|:(k1 5 kz)L+:|} ShH
1 — R
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which in the eikonal limit, i.e. L™ — 0, goes to unity,
lim GYE(k , ky: L) = 1. 52
[ Gy (ks ky ) (52)

Different from the eikonal double inclusive gluon produc-
tion cross section, in the non-eikonal expression the mir-
ror images are given by k, — —k, where k, = (k;r, k).
The mirror images of the terms that are accompanied by
the function QEE(kl_,kz_ ; L) are now accompanied by
gyE(k;, —k, L7T). However, as obvious from the defi-
nition given in Eq. (51), this function is not symmetric
under this transformation. Moreover, in certain kinematic
regimes the behaviour of gyﬁ(k;, ks L) differs com-
pletely from g;“E (ki —ky s L. Particularly, in a kinematic
region where k| ~ k, , one gets

GNB(k ks s L) > GYB(ky, —ky ;s L. (53)

This creates an asymmetry between the terms (k;, k,) and
their partners (k, — —k,). This asymmetry which comes
from the non-eikonal effects reminds the asymmetry between
the forward and backward peaks of the ridge structure
observed in two particle production. Therefore, non-eikonal
corrections break the accidental symmetry present in usual
CGC calculations and can give rise to odd harmonics. In the
remaining of the section we briefly examine the numerical
relevance of this effect.

A detailed numerical analysis of the azimuthal structures
in two particle correlations based on the non-eikonal double
inclusive gluon production cross section given in Eq. (47)
with Egs. (48), (49) and (50), is performed in [85] where it
is assumed that:

1. the colour sources inside the projectile have a Gaussian
distribution such that u?(k, q) = u?>(2n)*8? (k + q),
with p being the width of the Gaussian;

2. the Yukawa type potential that defines the target field cor-
relators is given by la(q)|? = uzT/(q2 —+ /LZT)2, with w7
being an infrared regulator analogous to a Debye mass;

3. the transverse area of the projectile S is defined through
(27)*6% (g —q) > S1.

In this analysis, function gg”i (ki k5 s L) that encodes
the non-eikonal effects defined in Eq. (51) is rewritten as

GYE(ky k5 L)

2

V2  [kje™M —kpe™ )

= — — n L
(kle m —k2€ 772)L+ \/i

(54)
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Fig. 8 Two particle azimuthal harmonics computed in the non-eikonal
Glasma graph approach using the definition Eq. (25). The values are cal-
culated taking ur = 0.4 GeV, up = 0.2 GeV and prTef =1 GeV for
different values of centre-of-mass energy and different gluon rapidities
n1 = n2 = n. Taken from [85]

using k= = k%/2k*, kT = ke /v/2, k = |k|.1?

In Fig. 8 the azimuthal harmonics up to vs are com-
puted by using the definition given in Eq. (25). prTef is
taken to be 1 GeV for different values of /syn and n; =
n2 = n. The plot shows that the value of the odd har-
monics decreases with increasing centre-of-mass energy at
fixed rapidity n. This behaviour is the natural outcome of the
fact that non-eikonal corrections become smaller with the
increasing Lorentz gamma factor. Therefore, one can con-
clude that the non-eikonal corrections can be negligible for
collisions at high centre-of-mass energy such as the ones at
the LHC but they can be important for collisions at RHIC
with /syy < 200GeV. On the other hand, at any fixed
energy the value of odd azimuthal harmonics decreases with
increasing rapidity ». This behaviour is also expected, since
the value of the odd harmonics is directly related to the non-

13 Assuming that L is the size of the target in its rest frame, in the
centre-of-mass frame L1 is taken as

1
Lt=——L~2A"Y3/yfm~ 10A'3/y Gev~!, (55)
V2

where A is the mass number of the nucleus and y ~ /syy/(2my)

accounts for the Lorentz contraction in the centre-of-mass frame. More-
over, for the numerics the gluonic size of the projectile is taken to be
B, = 4GeV 2, the transverse size of the projectile is assumed to be
S| =2m B, ~ 9.8 mb and the size of the target in its rest frame for a
Pb nucleus is taken to be L = 12 fm. Finally, the number of colours is
taken to be N. = 3 and the colour correlation is set to be AT = 0.

14 F
F—— v, |\/_5NN =20GeV;n=15
12— v3
[ Vg
f\l -
E OZ Vs
v 8
2 8
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Fig. 9 Scaling of v, (L) /v, (1.5 fm) with L™. Taken from [85]

eikonal corrections. The eikonal expansion parameter can be
written as py L e ™" in terms of rapidity and, therefore, non-
eikonal corrections (and thus the value of odd harmonics)
decrease with increasing rapidity and vanish completely in
the strict eikonal limit.!*

In Fig. 9, the ratio v, (L) /v, (1.5 fm) is plotted as a func-
tion L™ which reveals a very interesting feature of the effects
of non-eikonal corrections on azimuthal harmonics: odd har-
monics depend strongly on the size of the target while even
ones are almost independent of it. Even though the explicit
relation between multiplicity and L™ requires a more ded-
icated study, the scaling of the odd harmonics with L™ in
Fig. 9 qualitatively resembles the results of the analysis per-
formed in [82] where it is shown that the value of v3 increases
with the increasing multiplicity.

4 Non-CGC explanations

Besides explanations to the ridge phenomenon based on the
CGC, there are others that address its origin in the initial state
of the collision or, at least, do not demand hydrodynamics
or transport at work. It must be noted that the existence of
long range rapidity correlations was discussed long ago as a
consequence of multiple scattering, see [93,94].

This approach was pushed forward in string models for
multiparticle production, see e.g. [95]. Later on, several mod-
els that consider string interactions were argued to lead to
azimuthal asymmetries: string percolation [96-98] with the
creation of azimuthally anisotropic strong chromoelectric
fields, colour reconnection [99] that is able to produce some
of the QGP-like features observed in pp, and string repul-
sion [100,101]. It is not clear whether the dynamics con-
tained in these approaches can be considered as pure ini-
tial state but they offer a mechanism to produce the ridge in

14 In Fig. 8, the unrealistic peaks that account for the HBT contribu-
tions are due to the use of /Lz(k, q) X 5@k 4+ q). In a more realistic
treatment, ,u2 can be chosen as Gaussian which would peak around
k + q = 0 and show a bell shape behaviour.
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collisions between small systems that does not require any
explicit final state rescattering, see [102] for a model that
explicitly requires parton and/or hadron rescattering to build
azimuthal asymmetries even with just two strings. In all these
approaches, particle production from a single string is still
isotropic and the anisotropy is built after string breaking.

A string-based model is also proposed in [103,104].
There, valence diquark-quark flux tubes or strings in the
incoming protons overlap and produce more particles in
the transverse than in the longitudinal direction of the flux
tube. Such anisotropic particle production leads to azimuthal
asymmetries and the prediction has been made that it should
also be visible in photoproduction, with particle production
becoming maximal in the plane of the deflected electron (in
ep collisions) or proton (in UPCs).

It should be noted that all these approaches are inspired
in the string behaviour of the QCD interaction in the non-
perturbative domain, in contrast to the CGC that relies on
perturbation theory for a small coupling constant. Indeed
already in the framework of Reggeon field theory, some ideas
have been pushed [105] on the spatial variation of the trans-
verse density in the hadron that resemble those in the CGC.
Or CGC arguments have been extended to the soft physics
domain and applied to describe azimuthal correlations, see
[106,107] and subsequent papers of this group.'?

Finally, let us indicate that azimuthal asymmetries arise
in several processes when the nucleon is studied and char-
acterised beyond collinear parton densities, as in the frame-
work of Wigner distributions and TMD parton densities, see
[110,111]. Azimuthal asymmetries then arise in final observ-
ables like dijet production in DIS [112-114]. But, although
these calculations are often performed in a framework close
to that of the CGC which is related with the TMD framework
at small x [115], it goes beyond the standard CGC context to
link with other physics like spin.

5 Summary and discussions

In this manuscript we have discussed the explanations that are
currently proposed to describe particle correlations, the ridge,
observed in experimental data in small collision systems,
pp and pA, from the initial state point of view. Our main
focus has been those weak coupling explanations based on
the CGC. We have assumed that correlations among partons
in the initial stage leave an imprint on those among particles
in the final state, i.e. they are not washed out by final strong
final state interactions and hadronisation.

15 There are also attempts to describe the near side ridge as a conse-
quence of the momentum kick given by the leading parton to medium
constituents [108], with a medium already present in pp collisions, or
to minijets [109].

@ Springer

First, we have focused on the standard eikonal treatment
within the glasma graph approximation which is valid for col-
lisions between dilute objects — pp. We have reviewed the
studies which have shown that this approximation encodes
two different type of contributions, namely the Bose enhance-
ment of both projectile and target gluons and also HBT cor-
relations of the produced final gluons.

We have summarised the procedure that should be adopted
to extend the validity of glasma graph approximation from
dilute-dilute to dilute-dense (i.e. from pp to pA) collisions
by taking into account the multiple scattering effects in the
dense target. We have shown that the structure of the double
inclusive gluon production cross section is symmetric under
(ko — —kj), which is known as the accidental symmetry
of the CGC. Since this symmetry is the reason for vanishing
odd harmonics in the CGC framework, we have discussed the
suggested mechanisms to break this accidental symmetry.

In particular, we have focused on a specific mechanism
to break this symmetry which is based on going beyond the
standard eikonal approximation and including the subeikonal
corrections that are due to the finite longitudinal width of the
target. We have argued that such non-eikonal corrections,
when included in the glasma graph approach to two particle
correlations, successfully generate non-zero odd harmonics
in specific kinematics. We would like to emphasise here that
we make no attempt to compare the results with experimen-
tal data but only address the existence and size of the non-
eikonal effects on the azimuthal structure. As expected from
non-eikonal corrections, their value and thus that of the odd
harmonics decrease rapidly with increasing centre-of-mass
energy. This decrease is strong since the analysis is performed
for a dilute target — a slower decrease of the size of the odd
harmonics with increasing energy could be expected in a
dilute-dense collision. Besides, the treatment of such non-
leading eikonal corrections shows explicitly the link of the
formalisms used in CGC and jet quenching calculations.

At this point, we should comment briefly on the compar-
ison with experimental data. The main characteristics con-
cerning azimuthal asymmetries in small systems observed in
experiment [1-5,7-10,13,16-19] are:

— The even and odd harmonics extracted using correlations
between two and more particles, are of similar size to
those found in larger systems.

— They show the same dependence on the mass of the mea-
sured hadron as found in larger systems (see [116] for an
approach in the CGC).

— Even harmonics show a much weaker dependence on the
multiplicity in the event than odd harmonics.

— vy and v3 found in pAu, dAu and 3HeAu collisions at

RHIC show, for central (head-on) collisions, the ordering
pAu dAu . ,3HeAu , PAU _  dAu 3HeAu
v, < U R, , vy AU < vy .
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— Measurements of many particle cumulants show evi-
dence of collectivity. For example, four particle cumu-
lants ¢»{4} = (ei2(¢1+¢z—¢3—¢4)) — 2<ei2(¢1—¢2))2 (v2{4}
= [—c2{4}1"/*) change sign from positive to negative
with increasing associated multiplicity, with a smooth
behaviour from small to large systems and from smaller
to larger energies.

In the glasma graph approximation, several studies were
done that describe pp data in a reasonable manner [55-58].
Later on, these studies were extended to pA with diverse
degree of modelling [59,60]. Then, odd azimuthal harmonics
were introduced following [80,81], with the corresponding
numerical studies and a comparison with data performed in
[82,83]. In these latter studies a successful comparison with
RHIC and LHC data was initially claimed, which was later
corrected after the criticism in [117]. Nevertheless, it must
be stated that none of the numerical calculations can be con-
sidered as a full implementation of the theoretical framework
and that some results are still to be clarified from an analytical
point of view, e.g. those in [59,60] about the second Fourier
coefficient defined through four particle correlations (v2{4})
where the mentioned change of sign in ¢>{4} is attributed to
multiple scattering beyond glasma graphs.

Finally, we have also shortly commented on approaches
that are not based on, or go beyond, CGC ideas, to study the
two particle correlations from the initial state.

To conclude, let us indicate that future experimental pro-
grammes and facilities [27,118—121] will address the physics
of small systems and the transition from small to large, par-
ticularly the onset and understanding of collectivity which is
a central question in QCD at high energies.
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