Skip to main content
Log in

High-spin doublet band structures in odd–odd \(^{194-200}\)Tl isotopes

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

The basis space in the triaxial projected shell model (TPSM) approach is generalized for odd–odd nuclei to include two-neutron and two-proton configurations on the basic one-neutron coupled to one-proton quasiparticle state. The generalization allows to investigate odd–odd nuclei beyond the band crossing region and as a first application of this development, high-spin band structures recently observed in odd–odd \(^{194-200}\)Tl isotopes are investigated. In some of these isotopes, the doublet band structures observed after the band crossing have been conjuctured to arise from the spontaneous breaking of the chiral symmetry. The driving configuration of the chiral symmetry in these odd–odd isotopes is one-proton and three-neutrons rather than the basic one-proton and one-neutron as already observed in many other nuclei. It is demonstrated using the TPSM approach that energy differences of the doublet bands in \(^{194}\)Tl and \(^{198}\)Tl are, indeed, small. However, the differences in the calculated transition probabilities are somewhat larger than what is expected in the chiral symmetry limit. Experimental data on the transition probabilities is needed to shed light on the chiral nature of the doublet bands.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: All data generated during this study are contained in this published article.]

References

  1. A. Bohr, B.R. Mottelson, Nuclear Structure, vol. II (Benjamin Inc., New York, 1975)

    MATH  Google Scholar 

  2. D.J. Rowe, J.L. Wood, Fundamentals of Nuclear Models: Foundational Models (World Scientific, Singapore, 2010)

    MATH  Google Scholar 

  3. S. Bhattacharyya, S. Das Gupta, H. Pai, G. Mukherjee, R. Palit, F.R. Xu, Q. Wu, A. Shrivastava, M.A. Asgar, R. Banik, T. Bhattacharjee, S. Chanda, A. Chatterjee, A. Goswami, V. Nanal, S.K. Pandit, S. Saha, J. Sethi, T. Roy, S. Thakur, Phys. Rev. C 95, 014301 (2017)

    ADS  Google Scholar 

  4. P.L. Masiteng, E.A. Lawrie, T.M. Ramashidzha, R.A. Bark, B.G. Carlsson, J.J. Lawrie, R. Lindsay, F. Komati, J. Kau, P. Maine, S.M. Maliage, I. Matamba, S.M. Mullins, S.H.T. Murray, K.P. Mutshena, A.A. Pasternak, I. Ragnarsson, D.G. Roux, J.F. Sharpey-Schafer, O. Shirinda, P.A. Vymers, Phys. Lett. B 719, 83 (2013)

    ADS  Google Scholar 

  5. H. Pai, G. Mukherjee, S. Bhattacharyya, M.R. Gohil, T. Bhattacharjee, C. Bhattacharya, R. Palit, S. Saha, J. Sethi, T. Trivedi, S. Thakur, B.S. Naidu, S.K. Jadav, R. Donthi, A. Goswami, S. Chanda, Phys. Rev. C 85, 064313 (2012)

    ADS  Google Scholar 

  6. E.A. Lawrie, P.A. Vymers, J.J. Lawrie, Ch. Vieu, R.A. Bark, R. Lindsay, G.K. Mabala, S.M. Maliage, P.L. Masiteng, S.M. Mullins, S.H.T. Murray, I. Ragnarsson, T.M. Ramashidzha, C. Schuck, J.F. Sharpey-Schafer, O. Shirinda, Phys. Rev. C 78, 021305(R) (2008)

    ADS  Google Scholar 

  7. S. Frauendorf, Rev. Mod. Phys. 73, 463 (2001)

    ADS  Google Scholar 

  8. T. Koike, K. Starosta, I. Hamamoto, Phys. Rev. Lett. 17, 172502 (2004)

    ADS  Google Scholar 

  9. J. Meng, S.Q. Zhang, J. Phys. G 37, 064025 (2010)

    ADS  Google Scholar 

  10. J. Meng, P. Zhao, Phys. Scr. 91, 053008 (2016)

    ADS  Google Scholar 

  11. S. Frauendorf, J. Meng, Nucl. Phys. A 617, 131 (1997)

    ADS  Google Scholar 

  12. C. Vaman, D.B. Fossan, T. Koike, K. Starosta, I.Y. Lee, A.O. Macchiavelli, Phys. Rev. Lett. 92, 032501 (2001)

    ADS  Google Scholar 

  13. T. Koike, K. Starosta, C.J. Chiara, D.B. Fossan, D.R. LaFosse, Phys. Rev. C 67, 044319 (2003)

    ADS  Google Scholar 

  14. K. Starosta, T. Koike, C.J. Chiara, D.B. Fossan, D.R. LaFosse, A.A. Hecht, C.W. Beausang, M.A. Caprio, J.R. Cooper, R. Krücken, J.R. Novak, N.V. Zamfir, K.E. Zyromski, D.J. Hartley, D.L. Balabanski, J. Zhang, S. Frauendorf, V.I. Dimitrov, Phys. Rev. Lett. 86, 971 (2001)

    ADS  Google Scholar 

  15. A.A. Hecht, C.W. Beausang, K.E. Zyromski, D.L. Balabanski, C.J. Barton, M.A. Caprio, R.F. Casten, J.R. Cooper, D.J. Hartley, R. Krücken, D. Meyer, H. Newman, J.R. Novak, E.S. Paul, N. Pietralla, A. Wolf, N.V. Zamfir, J.-Y. Zhang, F. Dönau, Phys. Rev. C 63, 051302 (2001)

    ADS  Google Scholar 

  16. S. Zhu, U. Garg, B.K. Nayak, S.S. Ghugre, N.S. Pattabiraman, D.B. Fossan, T. Koike, K. Starosta, C. Vaman, R.V.F. Janssens, R.S. Chakrawarthy, M. Whitehead, A.O. Macchiavelli, S. Frauendorf, Phys. Rev. Lett. 91, 132501 (2003)

    ADS  Google Scholar 

  17. C. Liu, S.Y. Wang, R.A. Bark, S.Q. Zhang, J. Meng, B. Qi, P. Jones, S.M. Wyngaardt, J. Zhao, C. Xu, S.G. Zhou, S. Wang, D.P. Sun, L. Liu, Z.Q. Li, N.B. Zhang, H. Jia, X.Q. Li, H. Hua, Q.B. Chen, Z.G. Xiao, H.J. Li, L.H. Zhu, T.D. Bucher, T. Dinoko, J. Easton, K. Juhász, A. Kamblawe, E. Khaleel, N. Khumalo, E.A. Lawrie, J.J. Lawrie, S.N.T. Majola, S.M. Mullins, S. Murray, J. Ndayishimye, D. Negi, S.P. Noncolela, S.S. Ntshangase, B.M. Nyakó, J.N. Orce, P. Papka, J.F. Sharpey-Schafer, O. Shirinda, P. Sithole, M.A. Stankiewicz, M. Wiedeking, Phys. Rev. Lett. 116, 112501 (2016)

    ADS  Google Scholar 

  18. B.W. Xiong, Y.Y. Wang, At. Data Nucl. Data Tables 125, 193 (2019)

    ADS  Google Scholar 

  19. S.Y. Wang, B. Qi, L. Liu, S.Q. Zhang, H. Hua, X.Q. Li, Y.Y. Chen, L.H. Zhu, J. Meng, S.M. Wyngaardt, P. Papka, T.T. Ibrahim, R.A. Bark, P. Datta, E.A. Lawrie, J.J. Lawrie, S.N.T. Majola, P.L. Masiteng, S.M. Mullins, J. Gál, G. Kalinka, J. Molnár, B.M. Nyakó, J. Timár, K. Juhász, R. Schwengner, Phys. Lett. B 703, 40 (2011)

    ADS  Google Scholar 

  20. T. Roy, G. Mukherjee, MdA Asgar, S. Bhattacharyya, S. Bhattacharya, C. Bhattacharya, S. Bhattacharya, T.K. Ghosh, K. Banerjee, S. Kundu, T.K. Rana, P. Roy, R. Pandey, J. Meena, A. Dhal, R. Palit, S. Saha, J. Sethi, S. Thakur, B.S. Naidu, S.V. Jadav, R. Dhonti, H. Pai, A. Goswam, Phys. Lett. B 782, 768 (2018)

    ADS  Google Scholar 

  21. S.J. Zhu, J.H. Hamilton, A.V. Ramayya, P.M. Gore, J.O. Rasmussen, V. Dimitrov, S. Frauendorf, R.Q. Xu, J.K. Hwang, D. Fong, L.M. Yang, K. Li, Y.J. Chen, X.Q. Zhang, E.F. Jones, Y.X. Luo, I.Y. Lee, W.C. Ma, J.D. Cole, M.W. Drigert, M. Stoyer, G.M. Ter-Akopian, A.V. Daniel, Eur. Phys. J. A 25, 459 (2005)

    Google Scholar 

  22. V.I. Dimitrov, S. Frauendorf, F. Dönau, Phys. Rev. Lett. 84, 5732 (2000)

    ADS  Google Scholar 

  23. P. Olbratowski, J. Dobazewski, J. Dudek, W. Plöciennik, Phys. Rev. Lett. 93, 052501 (2004)

    ADS  Google Scholar 

  24. S.Q. Zhang, B. Qi, S.Y. Wang, J. Meng, Phys. Rev. C 75, 044307 (2007)

    ADS  Google Scholar 

  25. S. Mukhopadhyay, D. Almehed, U. Garg, S. Frauendorf, T. Li, P.V. Madhusudhana Rao, X. Wang, S.S. Ghugre, M.P. Carpenter, S. Gros, A. Hecht, R.V.F. Janssens, F.G. Kondev, T. Lauritsen, D. Seweryniak, S. Zhu, Phys. Rev Lett. 99, 172501 (2007)

    ADS  Google Scholar 

  26. D. Almehed, F. Dönau, S. Frauendorf, Phys. Rev. C 83, 054308 (2011)

    ADS  Google Scholar 

  27. J.A. Sheikh, K. Hara, Phys. Rev. Lett. 82, 3968 (1999)

    ADS  Google Scholar 

  28. G.H. Bhat, J.A. Sheikh, R. Palit, Phys. Lett. B 707, 250 (2012)

    ADS  Google Scholar 

  29. G.H. Bhat, R.N. Ali, J.A. Sheikh, R. Palit, Nucl. Phys. A 922, 150 (2014)

    ADS  Google Scholar 

  30. W.A. Dar, J.A. Sheikh, G.H. Bhat, R. Palit, R.N. Ali, S. Frauendorf, Nucl. Phys. A 933, 123 (2015)

    ADS  Google Scholar 

  31. C.L. Zhang, G.H. Bhat, W. Nazarewicz, J.A. Sheikh, Y. Shi, Phys. Rev. C 92, 034307 (2015)

    ADS  Google Scholar 

  32. G.H. Bhat, J.A. Sheikh, Y. Sun, R. Palit, Nucl. Phys. A 947, 127 (2016)

    ADS  Google Scholar 

  33. J.A. Sheikh, G.H. Bhat, W.A. Dar, S. Jehangir, P.A. Ganai, Phys. Scr. 91, 063015 (2016)

    ADS  Google Scholar 

  34. P. Ring, P. Schuck, The Nuclear Many-Body Problem (Springer, New York, 1980)

    Google Scholar 

  35. K. Hara, S. Iwasaki, Nucl. Phys. A 332, 61 (1979)

    ADS  Google Scholar 

  36. K. Hara, S. Iwasaki, Nucl. Phys. A 348, 200 (1980)

    ADS  Google Scholar 

  37. S.G. Nilsson, C.F. Tsang, A. Sobiczewski, Z. Szymanski, S. Wycech, C. Gustafson, I. Lamm, P. Moller, B. Nilsson, Nucl. Phys. A 131, 1 (1969)

    ADS  Google Scholar 

  38. K. Hara, Y. Sun, Int. J. Mod. Phys. E 4, 637 (1995)

    ADS  Google Scholar 

  39. J.-Ye Zhang, A.J. Larabee, L.L. Riedinger, J. Phys. G 13, 75 (1987)

    Google Scholar 

  40. Y. Sun, J.L. Egido, Nucl. Phys. A 580, 1 (1994)

    ADS  Google Scholar 

  41. N. Tajima, Nucl. Phys. A 572, 365 (1994)

    ADS  Google Scholar 

  42. E. Grodner, Acta Phys. Polon. B 39, 531 (2008)

    ADS  Google Scholar 

  43. F. Dönau, S. Frauendorf, in Proceedings of the International Conference on High. Angular Momentum Properties of Nuclei, Nuclear Science, Oak Ridge (1982)

  44. A. Gsannatsempo, G. Maino, A. Nannini, P. Sona, Phys. Rev. C 48, 6 (1993)

    Google Scholar 

  45. P.L. Masiteng, A.A. Pasternak, E.A. Lawrie, O. Shirinda, J.J. Lawrie, R.A. Bark, S.P. Bvumbi, N.Y. Kheswa, R. Lindsay, E.O. Lieder, R.M. Lieder, T.E. Madiba, S.M. Mullins, S.H.T. Murray, J. Ndayishimye, S.S. Ntshangase, P. Papka, J.F. Sharpey-Schafer, Eur. Phys. J. A 52, 28 (2016)

    ADS  Google Scholar 

  46. F.Q. Chen, Q.B. Chen, Y.A. Luo, J. Meng, S.Q. Zhang, Phys. Rev. C 96, 051303 (2017)

    ADS  Google Scholar 

  47. F.Q. Chen, J. Meng, S.Q. Zhang, Phys. Lett. B 785, 211 (2018)

    ADS  Google Scholar 

  48. Y.K. Wang, F.Q. Chen, P.W. Zhao, S.Q. Zhang, J. Meng, Phys. Rev. C 99, 054303 (2019)

    ADS  Google Scholar 

Download references

Acknowledgements

Three of us (GHB, JAS and NR) would like to acknowledge DST for Project no. CRG/2019/004960 (Govt. of India) for providing the financial support to carry out the research work. The authors would also like to acknowledge Dr. E. A. Lawrie and Dr. S. Bhattacharya for providing the measured data on the electromagnetic transitions for \(^{194,200}\)Tl isotopes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Jehangir.

Additional information

Communicated by Kamila Sieja

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jehangir, S., Maqbool, I., Bhat, G.H. et al. High-spin doublet band structures in odd–odd \(^{194-200}\)Tl isotopes. Eur. Phys. J. A 56, 197 (2020). https://doi.org/10.1140/epja/s10050-020-00206-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-020-00206-9

Navigation