Skip to main content
Log in

Scaled variables and the quark-hadron duality

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

The thermodynamic quantities of the ideal gas of hadrons and the \((2+1)\)-flavor lattice QCD scaled by the effective degeneracy factors of the corresponding models are compared. We have found that in terms of the scaled variables the quark-hadron duality of the lattice QCD and the hadron resonance gas (HRG) model disappears. However, we have revealed that the scaled variables lead to the quark-hadron duality of the lattice QCD and the quantum ideal gas of kaons and antikaons, namely, the ideal gas of those hadrons that contain all the three quarks uds and their antiquarks. Satisfactory agreement between the scaled results of the kaon ideal gas and the lattice QCD data is achieved at large values of the volume in the entire temperature range. In the ideal gas of kaons there is no any phase transition. Nevertheless, in our calculations the scaled thermodynamic quantities of the ideal gas and the lattice QCD follow the same qualitative behavior and are consistent with each other especially at high temperatures in the perturbative region and the Stefan–Boltzmann limit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: There is no data to analyze.]

References

  1. D.E. Miller, Phys. Rep. 443, 55 (2007)

    Article  ADS  Google Scholar 

  2. A. Bazavov et al., Phys. Rev. D 90, 094503 (2014)

    Article  ADS  Google Scholar 

  3. S. Borsányi et al., Phys. Lett. B 730, 99 (2014)

    Article  ADS  Google Scholar 

  4. A. Bazavov et al., Phys. Rev. D 95, 054504 (2017)

    Article  ADS  Google Scholar 

  5. O. Philipsen, Prog. Part. Nucl. Phys. 70, 55 (2013)

    Article  ADS  Google Scholar 

  6. F. Burger, M. Müller-Preussker, Nucl. Part. Phys. Proc. 261–262, 83 (2015)

    Article  Google Scholar 

  7. P. Hegde, Nucl. Phys. A 931, 851 (2014)

    Article  ADS  Google Scholar 

  8. M. Caselle, A. Nada, M. Panero, Phys. Rev. D 98, 054513 (2018)

    Article  ADS  Google Scholar 

  9. Y. Aoki, G. Endrodi, Z. Fodor, S.D. Katz, K.K. Szabó, Nature 443, 675 (2006)

    Article  ADS  Google Scholar 

  10. C. Ratti, S. Borsányi, Z. Fodor, C. Hoelbling, S.D. Katz, S. Krieg, K.K. Szabó, Nucl. Phys. A 855, 253 (2011)

    Article  ADS  Google Scholar 

  11. F. Karsch, Acta Phys. Pol. B Proc. Suppl. 7, 117 (2014)

    Article  Google Scholar 

  12. A. Andronic, P. Braun-Munzinger, J. Stachel, M. Winn, Phys. Lett. B 718, 80 (2012)

    Article  ADS  Google Scholar 

  13. A. Andronic, P. Braun-Munzinger, K. Redlich, J. Stachel, Nature 561, 321 (2018)

    Article  ADS  Google Scholar 

  14. V. Vovchenko, D.V. Anchishkin, M.I. Gorenstein, Phys. Rev. C 91, 024905 (2015)

    Article  ADS  Google Scholar 

  15. V.D. Toneev, A.S. Parvan, J. Phys. G Nucl. Part. Phys. 31, 583 (2005)

    Article  ADS  Google Scholar 

  16. Kohsuke Yagi, Tetsuo Hatsuda, Yasuo Miake, Quark–Gluon Plasma: From Big Bang to Little Bang (Cambridge University Press, Cambridge, 2008)

    Google Scholar 

  17. G.E. Brown, H.A. Bethe, P.M. Pizzochero, Phys. Lett. B 263, 337 (1991)

    Article  ADS  Google Scholar 

  18. L. Turko, D. Blaschke, D. Prorok, J. Berdermann, EPJ Web Conf. 71, 00134 (2014)

    Article  Google Scholar 

  19. J. Beringer et al., Particle data group. Phys. Rev. D 86, 010001 (2012)

    Article  ADS  Google Scholar 

  20. A.S. Parvan, Physica A 496, 410 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  21. C. Blume, C. Markert, Prog. Part. Nucl. Phys. 66, 834 (2011)

    ADS  Google Scholar 

  22. F. Antinori et al., NA57 collaboration. J. Phys. G Nucl. Part. Phys. 32, 2065 (2006)

    Article  Google Scholar 

  23. J. Stachel, Nucl. Phys. A 654, 119c (1999)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the joint research project of JINR and IFIN-HH. I am indebted to T. Bhattacharyya, J. Cleymans, S. Mogliacci, A.S. Sorin and O.V. Teryaev for fruitful discussions. I am also grateful to M. Ilgenfritz for the discussions related to the lattice QCD.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Parvan.

Additional information

Communicated by Xin-Nian Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parvan, A.S. Scaled variables and the quark-hadron duality. Eur. Phys. J. A 56, 192 (2020). https://doi.org/10.1140/epja/s10050-020-00203-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-020-00203-y

Navigation