Skip to main content

Advertisement

Log in

Energy scan/dependence of kinetic freeze-out scenarios of multi-strange and other identified particles in central nucleus–nucleus collisions

  • Regular Article –Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

The transverse momentum (mass) spectra of the multi-strange and non-multi-strange (i.e. other identified) particles in central gold–gold (Au–Au), lead–lead (Pb–Pb), argon–muriate (Ar–KCl) and nickel–nickel (Ni–Ni) collisions over a wide energy range have been studied in this work. The experimental data measured by various collaborations have been analyzed. The blast-wave fit with Tsallis statistics is used to extract the kinetic freeze-out temperature and transverse flow velocity from the experimental data of transverse momentum (mass) spectra. The extracted parameters increase with the increase of collision energy and show the trend of saturation at the Beam Energy Scan (BES) energies at the Relativistic Heavy Ion Collider (RHIC). This saturation implies that the onset energy of the phase transition of partial deconfinement is 7.7 GeV and that of whole deconfinement is 39 GeV. Furthermore, the energy scan/dependence of kinetic freeze-out scenarios are observed for the multi-strange and other identified particles, though the multiple freeze-out scenarios are also observed for various particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: The data used to support the findings of this study are included within the article and are cited at relevant places within the text as references.]

References

  1. BRAHMS Collaboration (I. Arsene et al.), Nucl. Phys. A 757, 1 (2005)

  2. PHENIX Collaboration (K. Adcox et al.), Nucl. Phys. A 757, 184 (2005)

  3. PHOBOS Collaboration (B.B. Back et al.), Nucl. Phys. A 757, 28 (2005)

  4. STAR Collaboration (J. Adams et al.), Nucl. Phys. A 757, 102 (2005)

  5. J. Cleymans, K. Redlich, Phys. Rev. C 60, 054908 (1999)

    ADS  Google Scholar 

  6. F. Becattini, J. Manninen, M. Gazdzicki, Phys. Rev. C 73, 044905 (2006)

    ADS  Google Scholar 

  7. A. Andronic, P. Braun-Munzinger, J. Stachel, Nucl. Phys. A 772, 167 (2006)

    ADS  Google Scholar 

  8. E. Laermann, O. Philipsen, Ann. Rev. Nucl. Part. Sci. 53, 163 (2003)

    ADS  Google Scholar 

  9. Y. Aoki, G. Endrodi, Z. Fodor, S.D. Katz, K.K. Szabo, Nature 443, 675 (2006)

    ADS  Google Scholar 

  10. M. Cheng, N.H. Christ, S. Datta, J. van der Heide, C. Jung, F. Karsch, O. Kaczmarek, E. Laermann, R.D. Mawhinney, C. Miao, P. Petreczky, K. Petrov, C. Schmidt, W. Soeldner, T. Umeda, Phys. Rev. D 77, 014511 (2008)

    ADS  Google Scholar 

  11. M. Asakawa, K. Yazaki, Nucl. Phys. A 504, 668 (1989)

    Google Scholar 

  12. A. Barducci, R. Casalbuoni, S. De Curtis, R. Gatto, G. Pettini, Phys. Rev. D 41, 1610 (1990)

    ADS  Google Scholar 

  13. M.A. Stephanov, Prog. Theor. Phys. Suppl. 153, 139 (2004)

  14. M.A. Stephanov, Int. J. Mod. Phys. A 20, 4387 (2005)

    ADS  Google Scholar 

  15. Z. Fodor, S.D. Katz, JHEP 0404, 050 (2004)

    ADS  Google Scholar 

  16. R.V. Gavai, S. Gupta, Phys. Rev. D 78, 114503 (2008)

    ADS  Google Scholar 

  17. S. Rao, M. Sievert, J. Noronha-Hostler, arXiv:1910.03677 [nucl-th] (2019)

  18. G. Odyniec for the STAR Collaboration, PoS CORFU2018, 151 (2018)

  19. M. Tokarev, A. Kechechyan, I. Zborovský, Nucl. Phys. A 993, 121646 (2020)

    Google Scholar 

  20. L. Kumar for the STAR Collaboration, Nucl. Phys. A 904–905, 256c (2013)

  21. L. Kumar, Mod. Phys. Lett. A 28, 1330033 (2013)

    ADS  Google Scholar 

  22. U. Heinz, J. Phys. G 25, 263 (1999)

    ADS  Google Scholar 

  23. M. Waqas, B.-C. Li, Adv. High Energy Phys. 2020, 1787183 (2020)

    Google Scholar 

  24. M. Waqas, F.-H. Liu, Eur. Phys. J. Plus 135, 147 (2020)

    Google Scholar 

  25. H.-L. Lao, F.-H. Liu, B.-C. Li, M.-Y. Duan, R.A. Lacey, Nucl. Sci. Tech. 29, 164 (2018)

    Google Scholar 

  26. H.-L. Lao, F.-H. Liu, B.-C. Li, M.-Y. Duan, Nucl. Sci. Tech. 29, 82 (2018)

  27. Z.B. Tang, Y.C. Xu, L.J. Ruan, G. van Buren, F.Q. Wang, Z.B. Xu, Phys. Rev. C 79, 051901(R) (2009)

    ADS  Google Scholar 

  28. S. Chatterjee, S. Das, L. Kumar, D. Mishra, B. Mohanty, R. Sahoo, N. Sharma, Adv. High Energy Phys. 2015, 349013 (2015)

    Google Scholar 

  29. S. Chatterjee, B. Mohanty, R. Singh, Phys. Rev. C 92, 024917 (2015)

    ADS  Google Scholar 

  30. S. Chatterjee, B. Mohanty, Phys. Rev. C 90, 034908 (2014)

    ADS  Google Scholar 

  31. D. Thakur, S. Tripathy, P. Garg, R. Sahoo, J. Cleymans, Adv. High Energy Phys. 2016, 4149352 (2016)

    Google Scholar 

  32. F.-H. Liu, Y.-Q. Gao, T. Tian, B.-C. Li, Eur. Phys. J. A 50, 94 (2014)

    ADS  Google Scholar 

  33. P.Z. Ning, L. Li, D.F. Min, Foundation of Nuclear Physics: Nucleons and Nuclei (Higher Education Press, Beijing, 2003)

    Google Scholar 

  34. H.-L. Lao, H.-R. Wei, F.-H. Liu, R.A. Lacey, Eur. Phys. J. A 52, 203 (2016)

    ADS  Google Scholar 

  35. T. S. Biró, G. Purcsel and K. Ürmössy, Eur. Phys. J. A 40, 325 (2009)

  36. J. Cleymans, D. Worku, Eur. Phys. J. A 48, 160 (2012)

    ADS  Google Scholar 

  37. G.G. Barnaföldi, K. Ürmössy, T.S. Biró, J. Phys. Conf. Ser. 270, 012008 (2011)

    Google Scholar 

  38. J.C. Chen, Z.P. Zhang, G.Z. Su, L.X. Chen, Y.G. Shu, Phys. Lett. A 300, 65 (2002)

    ADS  MathSciNet  Google Scholar 

  39. J.M. Conroy, H.G. Miller, Phys. Rev. D 78, 054010 (2008)

    ADS  Google Scholar 

  40. G. Bíró. G.G. Barnaföldi, T.S. Biró, K. Ürmössy, AIP Conf. Proc. 1853, 080001 (2017)

  41. A.M. Teweldeberhan, A.R. Plastino, H.G. Miller, Phys. Lett. A 343, 71 (2004)

    ADS  Google Scholar 

  42. J.M. Conroy, H.G. Miller, A.R. Plastino, Phys. Lett. A 374, 4581 (2010)

    ADS  Google Scholar 

  43. F.M. Ciaglia, A. Ibort, G. Marmo, Int. J. Geom. Methods. Mod. Phys. 16, 1950136 (2019)

    MathSciNet  Google Scholar 

  44. R.C. Wang, C.Y. Wong, Phys. Rev. D 38, 348 (1988)

    ADS  Google Scholar 

  45. M. Waqas, F.-H. Liu, S. Fakhraddin, M.A. Rahim, Indian J. Phys. 93, 1329 (2019)

    ADS  Google Scholar 

  46. E. Schnedermann, J. Sollfrank, U.W. Heinz, Phys. Rev. C 48, 2462 (1993)

    ADS  Google Scholar 

  47. STAR Collaboration (B. I. Abelev et al.), Phys. Rev. C 79, 034909 (2009)

  48. A. Khuntia, H. Sharma, S. Kumar Tiwari, R. Sahoo, J. Cleymans, Eur. Phys. J. A 55, 3 (2019)

  49. CMS Collaboration (S. Chatrchyan et al.), Eur. Phys. J. C 72, 1945 (2012)

  50. M. Suleymanov, Int. J. Mod. Phys. E 27, 1850008 (2018)

    ADS  Google Scholar 

  51. E.K.G. Sarkisyan, A.S. Sakharov, AIP Conf. Proc. 828, 35 (2006)

    ADS  Google Scholar 

  52. E.K.G. Sarkisyan, A.S. Sakharov, Eur. Phys. J. C 70, 533 (2010)

    ADS  Google Scholar 

  53. A.N. Mishra, R. Sahoo, E.K.G. Sarkisyan, A.S. Sakharov, Eur. Phys. J. C 74, 3147 (2014)

    ADS  Google Scholar 

  54. E.K.G. Sarkisyan, A.N. Mishra, R. Sahoo, A.S. Sakharov, Phys. Rev. D 93, 054046 (2016)

    ADS  Google Scholar 

  55. E.K.G. Sarkisyan, A.N. Mishra, R. Sahoo, A.S. Sakharov, Phys. Rev. D 94, 011501 (2016)

    ADS  Google Scholar 

  56. E.K.G. Sarkisyan, A.N. Mishra, R. Sahoo, A.S. Sakharov, EPL 127, 62001 (2019)

  57. A.N. Mishra, A. Ortiz, G. Paic, Phys. Rev. C 99, 034911 (2019)

  58. P. Castorina, A. Iorio, D. Lanteri, H. Satz, M. Spousta, Phys. Rev. C 101, 054902 (2020)

  59. M.D. Azmi, J. Cleymans, Eur. Phys. J. C 75, 430 (2015)

    ADS  Google Scholar 

  60. F.-H. Liu, Y.-Q. Gao, H.-R. Wei, Adv. High Energy Phys. 2014, 293873 (2014)

    Google Scholar 

  61. K. Jiang, Y.Y. Zhu, W.T. Liu, H.F. Chen, C. Li, L.J. Ruan, Z.B. Tang, Z.B. Xu, Phys. Rev. C 91, 024910 (2015)

    ADS  Google Scholar 

  62. A.S. Parvan, T. Bhattacharyya, Eur. Phys. J. A 56, 72 (2020)

    ADS  Google Scholar 

  63. R. Hagedorn, Riv. Nuovo Cimento 6(10), 1 (1983)

    MathSciNet  Google Scholar 

  64. ALICE Collaboration (B.B. Abelev et al.), Eur. Phys. J. C 75, 1 (2015)

  65. R. Odorico, Phys. Lett. B 118, 151 (1982)

    ADS  Google Scholar 

  66. UA1 Collaboration (G. Arnison et al.), Phys. Lett. B 118, 167 (1982)

  67. M. Biyajima, T. Mizoguchi, N. Suzuki, Int. J. Mod. Phys. A 32, 1750057 (2017)

    Google Scholar 

  68. E866 and E917 Collaborations (L. Ahle et al.), Phys. Lett. B 476, 1 (2000)

  69. E895 Collaboration (J.L. Klay et al.), Phys. Rev. Lett. 88, 102301 (2002)

  70. E895 Collaboration (J.L. Klay et al.), Phys. Rev. C 68, 054905 (2003)

  71. E802 Collaboration (L. Ahle et al.), Phys. Rev. C 58, 3523 (1998)

  72. E802 Collaboration (L. Ahle et al.), Phys. Rev. C 57, R466(R) (1998)

  73. STAR Collaboration (L. Adamczyk et al.), Phys. Rev. C 96, 044904 (2017)

  74. V. Bairathi for the STAR Collaboration, Nucl. Phys. A 956, 292 (2016)

  75. M. Shao for the STAR Collaboration, J. Phys. G 31, S85 (2005)

  76. PHENIX Collaboration (K. Adcox et al.), Phys. Rev. Lett. 88, 242301 (2002)

  77. PHENIX Collaboration (S. S. Adler et al.), Phys. Rev. C 69, 034909 (2004)

  78. ALICE Collaboration (B. Abelev et al.), Phys. Rev. C 88, 044910 (2013)

  79. HADES Collaboration (G. Agakishiev et al.), Phys. Rev. C 82, 044907 (2010)

  80. HADES Collaboration (J. Adamczewski et al.), Phys. Lett. B 793, 457 (2019)

  81. STAR Collaboration (J. Adam et al.), arXiv:1906.03732 (2019)

  82. STAR Collaboration (M.M. Aggarwal et al.), Phys. Rev. C 83, 024901 (2011)

  83. STAR Collaboration (C. Adler et al.), Phys. Lett. B 595, 143 (2004)

  84. CMS Collaboration (V. Khachatryan et al.), Phys. Lett. B 768, 103 (2017)

  85. STAR Collaboration (B.I. Abelev et al.), Phys. Rev. C 79, 064903 (2009)

  86. ALICE Collaboration (B.I. Abelev et al.), Phys. Lett. B 595, 143 (2004)

  87. FOPI Collaboration (M. Merschmeyer et al.), Phys. Rev. C 76, 024906, (2007)

  88. S. Uddin, R.A Bhat, I.-U. Bashir, arXiv:1412.2663 (2014)

  89. V. Begun, W. Florkowski, M. Rybczynski, Phys. Rev. C 90, 054912 (2014)

    ADS  Google Scholar 

  90. NA49 Collaboration (N.G. Antoniou et al.), Phys. Rev. C 81, 064907 (2010)

  91. NA49 Collaboration (T. Anticic et al.), Phys. Rev. C 94, 044906 (2016)

  92. M. Maćkowiak-Pawłowska for the NA61/SHINE and NA49 Collaborations, arXiv:1212.6880 (2012)

  93. K. Grebieszkow for the NA49 and NA61/SHINE Collaborations, PoS EPS-HEP2009 030, (2009)

  94. NA61/SHINE Collaboration (N. Abgrall et al.), Eur. Phys. J. C 79, 100 (2019)

  95. V. Klochkov and I. Selyuzhenkov for the NA61/SHINE Collaboration, Nucl. Phys. A 982, 439 (2019)

  96. J. Cleymans, H. Oeschler, K. Redlich, S. Wheaton, Phys. Rev. C 73, 034905 (2006)

    ADS  Google Scholar 

  97. A. Andronic, P. Braun-Munzinger, J. Stachel, Nucl. Phys. A 834, 237c (2010)

    ADS  Google Scholar 

  98. A. Andronic, P. Braun-Munzinger, K. Redlich, J. Stachel, Nature 561, 321 (2018)

    ADS  Google Scholar 

  99. M.A. Stankiewicz, arXiv:nucl-th/0509058 (2005)

  100. R. Sahoo, AAPPS Bull. 29(4), 16 (2019)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China under Grant nos. 11575103, 11947418, and 11505104, the Chinese Government Scholarship (China Scholarship Council), the Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi (STIP) under Grant no. 201802017, the Shanxi Provincial Natural Science Foundation under Grant no. 201901D111043, and the Fund for Shanxi “1331 Project” Key Subjects Construction.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fu-Hu Liu.

Ethics declarations

Ethical approval

The authors declare that they are in compliance with ethical standards regarding the content of this paper.

Disclosure

The funding agencies have no role in the design of the study; in the collection, analysis, or interpretation of the data; in the writing of the manuscript; or in the decision to publish the results.

Conflict of interest

The authors declare that there are no conflicts of interest regarding the publication of this paper.

Additional information

Communicated by Evgeni Kolomeitsev.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Waqas, M., Liu, FH., Wang, RQ. et al. Energy scan/dependence of kinetic freeze-out scenarios of multi-strange and other identified particles in central nucleus–nucleus collisions. Eur. Phys. J. A 56, 188 (2020). https://doi.org/10.1140/epja/s10050-020-00192-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-020-00192-y

Navigation