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Abstract Hadronic cross sections are important ingredi-
ents in many of the ongoing research methods in high energy
nuclear physics, and it is always important to measure and/or
calculate the probabilities of different types of reactions. In
heavy-ion transport simulations at a few GeV energies, these
hadronic cross sections are essential and so far mostly the
exclusive processes are used, however, if one interested in
total production rates the inclusive cross sections are also nec-
essary to know. In this paper, we introduce a statistical-based
method, which is able to give good estimates to exclusive and
inclusive cross sections as well in the energy range of a few
GeV. The method and its estimates for not well-known cross
sections, will be used in a Boltzmann-Uehling-Uhlenbeck
(BUU) type off-shell transport code to explain charmonium
and bottomonium mass shifts in heavy-ion collisions.

1 Introduction

Hadronic cross sections at a few GeV are usually used as
input parameters in heavy-ion transport codes, where up to
10 — 20 GeV the main degrees of freedom are the known
baryons, mesons and the well-established resonances [1-4].
In these simulations mostly 2 — 2 exclusive reactions are
used as input, however there were some attempts to include
N — M reactions as well [5,6]. It is not straightforward how
to include these types of collisions into the codes, so these
are mostly omitted in the simulations. At higher energies,
partonic degrees of freedoms are also becoming important
[7]. Recent calculations show that the charmonium states
e.g. J/W, ¥ (3686), ¥ (3770) will acquire mass shifts dur-
ing their evolution in dense matter, which could indicate a
non-zero value for the gluon condensate at specific nuclear
densities [8—10]. This information, if measured could be
really important to non-perturbative quantum chromodynam-
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ics. For this purpose the inclusive charmonium production
cross sections should be known, however, they are not well
(or not at all) measured in the energy range we are interested
in (2-10 GeV), so it has to be estimated from some theory.
The method presented in this paper is able to predict inclu-
sive cross sections, which will be ultimately used to estimate
charmonium production cross sections. The paper is orga-
nized as follows. In sections one and two a basic formulation
of the method and its capabilities to estimate exclusive cross
sections are described. This can be found more rigorously
in [11], where the main idea and some examples were also
given. After the basic formulation, section three dedicated to
the normalization and model error estimation. The fourth sec-
tion describes a method, which is used to calculate inelastic
cross sections without summing over all the possible 2 — N
reactions and using only 1-, or 2 fireball event ratios. The
model error is also addressed in this section. The fifth sec-
tion divided into two subsections. In the first subsection six
examples are given for the inclusive cross sections compared
to their measured values, while the second subsection corre-
sponds to charmonium production and the estimation of the
charm quark creational probability. Finally the last section
briefly summarizes the paper.

2 Basic formulation and normalization

The method is based on the so-called Statistical Bootstrap
[12—14] approach, which idea was widely used to estimate
particle multiplicities at high energies [ 15—17]. In our model,
we assume that at the initial state of a collision a strongly
interacting, compound system is formed (a so-called fire-
ball), which will ultimately decay into hadrons giving some
specific final state of the collision. In the reaction probability,
the initial fireball formation stage and the hadronization stage
can be separated as it is shown in Eq. 1, where we assume
that the first stage is described by the total or inelastic cross
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sections of the reaction and the second stage is described by
some mixed statistical and dynamical factors.

G’l_)k(E) = (/Hd?’le(E’ DPls ey Pn))
i=1
k
x(/]‘[d%-w(E,ql,...,qk)) (1

i=1

where E is the CM energy of the collision (E = /s),
ok is the generalized n-body cross section, pi, ...p, are
the momenta of the incoming particles, g, ...qx are the
momenta of the outgoing particles, R(E, ...) is the function
describing the initial state dynamics, and w(E, ...) describes
the probability of a specific k-body final state. At the first
stage of the hadronization process the fireball with invari-
ant mass M = ./s directly giving hadrons or decay into
two subsequent fireballs with smaller masses m 1, m, where
mi + my = M should be fulfilled. The resulting fireball
will hadronize or decay into further fireballs. At the end of
the chain, all of the fireballs have to hadronize leaving only
hadrons at the end. The probability of the one-, two, three-,
etc... fireball scheme can be calculated with an appropriate
model described in our previous paper on this topic [11]. The
possible number of hadrons coming from one fireball is two
or three? with the probabilities of Pzd = 0.69, P3d =024
which is described in the original formulation of the statisti-
cal bootstrap by Frautschi [18].

An extra ingredient to the full probability (not men-
tioned in the original formulation, because the normalization
was cancelled in the calculated ratios), which is needed to
make a proper normalization is to separate stable and non-
stable/resonant particles and use a weighting factor to each
of the channels corresponding to the full width of the par-
ticles. In the model, the stable particles are the ones, which
could not decay into other hadrons via the strong interac-
tion. Examples are the N* nucleon resonances, which also
could decay strongly to protons/neutrons, so they are not sta-
ble. These unstable particles are weighted by a relativistic
Breit-Wigner factor [19]:

1 E'T;
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7w (E} —m})? + EXT? @

FER(E;, m;) =

where m; is the i th particle mass, 7 is its total width, E; is
the invariant mass of the resonance, and the energy integral
of FiBR(Ei, m;) is normalized to unity in E € [—00, 00].
The appearance of the Breit-Wigner factor can be
explained by the propagator of a particle with finite but non

I Tn our model it is the inelastic cross section is used, rather than the
total due to the exclusion of the elastic channel.

2 There is also a possibility that one fireball could decay into more
than three particles, however due to the small probabilities, they are
neglected in our model.
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negligible width, when calculating Feynman diagrams e.g.
as it was described in [20]. To calculate it’s contribution to
the full probbility it has to be integrated out in the physical
region, defined by the masses of the possible decay products
of each resonance.

Putting together everything the full probability of a one-
fireball scheme, which hadronizes into two or three particles
can be calculated as it is shown in Eq. 3:

Co,(E)PI(E)
Y Co,(EYP, (E)
T;(E)
> THE)

i b
Wi (E) = P{"(E)

= P/"(E) 3)

where Plf bis the probability of the one fireball decay scheme,
Cy, is the quark combinatorial probability for final state
i, which is proportional to the number of quark-antiquark
pairs created at energy E, and to the u, d, s, c, ... quark cre-
ational probabilities fitted from measured data. Furthermore,
n; stands for the number of hadrons coming from the i’th
fireball (2 or 3) and P,,ﬁ“ is the hadronization probability
factor given by Eq.4 and Eq.5 for two- and three-body states
respectively:

2
H,i _ 4 P2(E, my, my)
P (E)-E(zsl+1>P2 S E@RPN €
’;
H,i _ - d@3(E7m17m2am3)
P} (E)—E(251+1)P3 PSR (5)

where Pzd = 0.69 and P3d = 0.24 are the probabilities of a
two or three particle final state decays, s; is the spin of the
I’th particle, N; is the number of same particles in the final
state, m; are the masses of particles, @, (E) is the n-body
phase space integral, ans p (E) is the density of states (DOS)
given by the statistical bootstrap [21,22] :

av E %
——¢
(Eg + E)35

where a,E( and Ty are free parameters, however a always
factorized out due to the normalization and £y = 500 MeV is
previously fitted to the experimentally measured DOS [23].
In our previous paper we also set 7p = 160 MeV using
calculated and measured cross section ratios.

All of the factors in Eq. 3 are described in detail in [11].
To simplify the following sections we have introduced the
notation:

p(E) = , (6)

T:(E) = P/*(E)Co, (E) P (E) @)

The two- and three-body phase-spaces are weighted by
the product of the particles Breit-Wigner factors (if it is a
resonance) and integrated out to the corresponding energy
region as it is seen in Eq. 8:
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where q; is the three momenta of the j’th particle, E; is the
energy of the i’th particle and FZR(E,, m,) is the Breit-
Wigner probability factor of the resonance r, and V is the
interaction volume. If all of the particles are stable then the
integrals in the first bracket and the Breit-Wigner factors
are not needed. Otherwise the r index goes through all of
the resonances. The Breit-Wigner factor will decrease the
phase-space according to the resonance width e.g. for a three-
body channel with one resonance and two stable particles
(my =my =m3 =1GeV and I'1 = 0.2 GeV) the corre-
sponding phase-space ratio compared to the all stable particle
configuration can be seen in Fig. 1.

The phase-space with a resonant particle is decreased
accordingly to the Breit—-Wigner factors inside the phase-
space integrals.

The normalization sum in Eq. 3 goes through all the possi-
ble one-fireball decays which are allowed by the initial-state
quantum numbers. This implies that the normalization sum
is different for each reaction e.g. it is not the same for pp
and 7~ p reactions due to their different quantum numbers.
The extension to more fireballs is not straightforward, due to
the different possibilities of how to include quantum number
conservation into the model. In our normalization scheme,
only the full final state has to respect the conservation laws
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Fig. 1 Ratio of the three-body phase-space integrals for one resonant
and two stable vs. three stable particle configurations with m; = my =
m3 = 1 GeV masses, and I" = 0.2 GeV width for the resonance.
The S index in m;s stands for “Stable”, while the R index stands for
’Resonant’ particles.

and the quantum numbers of the different fireballs could be
anything, there are no restrictions to it. The normalization
procedure for more than one fireball is straightforward to see
from the two fireball probability in Eq. 9:

ey [max L) _Ti(E—x)
! . —
Wit (E) = PP () S e 1o 2 T (BT
Z>(E)
(€))
where the normalization sum Z>(E) is described by Eq. 10:
Xma‘( Tk(x) 7"1(E _x)
20= % sl s s
<kl>€S kl Xmin Za a(X) Za a( X)
(10)

and (ij) means a specific hadronic channel for each fireball
e.g. i = w70 for the first fireball, and j = pn for the sec-
ond fireball, so the expression gives us the X — 7 +t70pn
probability. sz Y is the probability of two fireball formation,
Xmin = 2m o is the threshold energy, 7, j, k, [ means a spe-
cific final state e.g. i = ppn® son; = 3, N; j = 1if the
two fireballs give different final states, and N; ; = 2 if the
two fireballs are the same i = j. In the normalization sum
in the denominator kIl € S means it goes through all the
possible final states, whose quantum numbers equal the ini-
tial state quantum numbers. The normalization sum for W
goes through all the possible two-, and three-body final states
regardless of the quantum numbers of the initial state. A short
example is the pp collision, where we have S = (0, 0, 0, 0)
(baryon number, charge, strangeness, charmness). For the
two fireball normalization sum, we only consider the chan-
nels which at the end give back the initial quantum numbers
eg 01 =(1,0,—-1,0) and Q> = (—1,0,1,0) is a good
choice as § = Q1 + Q3. So separately the fireballs do not
have to respect the conservation laws, but the whole system
has to and give back the initial quantum numbers. It is impor-
tant to note that the N-fireball probability can be built up by
the 1-fireball factors and their corresponding integrals as it
can be seen in Eq. 11 for the general case with N-fireballs.

k
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1
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where Z;(E) is the energy-dependent k-fireball normaliza-
tion factor given by Eq. 12.
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The complicated normalization factors can be dropped if the
ratio of the two process probabilities are taken with strictly
the same number of fireballs. If one channel could come
from more fireball decays e.g. 277 727 ~, which could come
from one fireball X — p°p® and two fireball decay as well
(X1, X2) = QnT, 27 ™) the normalization factors do not
drop out, however, if we have two channels, which exclu-
sively come from 1 fireball decay e.g. X — w7~ and
X — nn, then taking the ratio of the two probabilities the
normalization factor is dropped out. If we take the measured
cross section for one of the channels and multiply it with the
calculated ratio from the model, we get back the unknown
cross section of the other channel. This practically only works
for low multiplicities, as from one fireball the maximum num-
ber of hadrons, we can get is very limited.

To conclude this section the model is shown to be able
to give reasonably good estimates to cross sections with cal-
culating the probability ratios as it is shown in our previous
paper. The only free parameters in the model are the quark
creational probabilities, the interaction volume V, and the
hadronization temperature 7. The density of states contains
two more previously fitted parameters a, Eo, where a can
always be factored out by normalization, and Ey is fixed
by fitting to the experimentally observed DOS. In our pre-
vious paper, we fixed the temperature to 7p = 160 MeV
by calculating cross section ratios. The interaction volume
is set to a corresponding interaction radius of r = 0.5 fm,
which describes the calculated inclusive cross sections better
at higher energies than a larger value. The quark creational
probabilities are hidden in the energy-dependent quark com-
binatorial probability factor. Their fitted values in the energy
range of £ = 2 — 8 GeV for the three lightest quarks are
P, = P; = 0.425and P; = 0.15. These fits were made with-
out including charmed particles, however due to the small-
ness of the charm creational probabilities, these values are
approximately still valid in the energy range, we are inter-
ested in. For the heavier charm quarks and the corresponding
charmonium particles, the fit P, is not straightforward as the
experimental cross sections are very limited and the cross
sections are too small to use the same method which is used
to fit P,, P4, Ps. The solution to this problem is described in
Sect. 5.2.

There are some limitations to the model, however, which
has to be addressed. It is not suited to describe the elastic part
of the two-body reactions, so that channel is simply omitted
from the calculations and the inelastic ratio is used instead of
the total cross section. Another limitation is that the model
cannot describe the A + B — C reactions, where A, B, C
are some particles. This is the consequence of the Frautschi
picture of the Bootstrap, where the minimum number of final
state hadrons are 2. This problem is solved by introducing an
extra contribution to the cross section described by a Breit-
Wigner cross section formula o BR (E):

@ Springer
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where A, B are the colliding particles, C is the created res-
onance, which could decay into some specific final state
described by it’s total decay width I7,;. The s4 g ¢ factors
are the spins of the corresponding particles, and p; is the cen-
ter of mass momentum of the initial state. The relevant decay
widths can be gathered from the Particle Data Book (PDG)
[24]. With this in mind the probability of a specific channel
corresponding to the inelastic cross section is expressed in
Eq. 14.

Y0 (E)

i (E
oi(E) — Ri(E) +
Oinelastic(E)

—_ = (14)
Oinelastic(E)

where R;(E) is the cross section ratio from our statistical
model, where all the possible fireball decay probabilities are

summed over (Eq. 15).

n,'l ‘.I’l,'k

N
Ri(E) =Y W/ (E) (15)
k=1

where the sum of all the possible k = 1..N fireball schemes
for a specific final state are taken. An example is the final
state 377 37~ where one has to sum the 1-,2-, and 3 fireball
contributions as well. If one wants to calculate inelastic cross
sections the full normalization sum has to be calculated and
possibly an uncertainty analysis has to be done, which is the
main focus of the next section.

3 Normalization and uncertainty estimation

The normalized probability in Eq. 4 should give back the
071 /0inelastic Cross section ratio by definition. If we have a
specific channel “i” which only could come from a one fire-
ball decay scheme, then only the one fireball normalization
sum should be calculated. The following four processes were
calculated to test the method:

- pp—>ratn”

- pp — nn

- pp— ATTA—T
pp — KTK~

As the measured cross sections and the model also could
contain errors it is possible to estimate an error distribution
of the model from the distribution of the relative errors. To
this purpose, the relative error is calculated as it is shown in
Eq. 16.

ro — Wi

k (16)

ro
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where ry = 0;/0ine; and Wy is the one fireball model prob-
ability. The model calculations does not contain A + B —
C — D + E reactions, due to the lack of knowledge of the
branching ratios of heavy mesons to proton and antiproton.
Using the Gaussian error propagation formula, considering
that Ao; # 0, Aoiner 7 0, and AW; #£ 0 the absolute error
of the measured relative error Ak is expressed in Eq.17.

Ak

_ ﬁ(ﬂJr AWI) (17

ro \ 1o Wy

The relative error of the model could be expressed from
Eq. 17 as follows (Eq. 18):

W ro Wi . (18)
If the Ak uncertainty is approximated by the standard devia-
tion of the relative error distribution, and assuming an energy-
dependent model error, the relative model error distribution
could be expressed from Eq. 18 and its histogram can be seen
in Fig. 2:

The estimated relative error of the model is calculated
from this distribution by taking its mean value, which is
approximately AW;/W; = 0.4. This value will be the
approximated relative error of the model, which will be used
in the following sections, where the inelastic cross sections
are calculated. The calculated model probability with the
measured ratios can be seen in Fig. 3, where the uncertainty
bound is also calculated from the previously estimated model
error. It is again worth to mention, that in this calculations
the possible pp — X — w7~ processes are neglected,
where X is a heavy meson above the two proton threshold.
This is mainly due to the lack of knowledge of the branching
fractions at the PDG for heavy meson decays to proton and
antiproton.

35

I- model (W) relative error distribution I
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Fig. 2 Estimated relative error distribution of the model
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Fig. 3 The process pp — 77~ ratio to the inclusive cross section
oi"¢l with the full normalization for one fireball. Data taken from [25,
26]

mean relative error

N 0 100 M

Fig. 4 The relative error dependence of the two fireball normalization
ratios on the number of inelastic-, and inclusive channels (N,M).

4 Inclusive cross sections

In heavy-ion simulations, if the interesting quantities are par-
ticle multiplicities, then the desirable cross sections are the
inclusive ones e.g. if one interested in the charmonium spec-
tra which is measured by their dilepton pair decays an inter-
esting background process could be X — DD, where each
D meson could decay into an electron(positron) and a Kaon,
giving an overall dilepton pair at the end. In this example,
the (X — DD+ anything) process should be calculated
as every possible channel is giving an extra contribution to
the full background. The naive way to calculate inclusive
cross sections to sum over all the possible reactions, which
respects the quantum number conservation laws, however,
this method is not very efficient and there is a much easier
way to do this.

@ Springer
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Let us take the probability ratio of a channel with two dif-
ferent normalization, which only means the normalization
sum contains different channels. The inelastic sum contains
all the possible final states allowed by quantum number con-
servation, while the inclusive sum contains every possibility,
but with one specific particle fixed in every possible final
state. To make things easy the reference channel should be
strictly 1, 2, 3, ... N fireball channel without mixing so that
the normalization is clear. Let us take a reference channel
I, which is coming from strictly one fireball channel and
calculate the ratio like in Eq. 19:

Z.jeinclusive Tj (E)

= (19)
Zjeinelastic Tj (E)

where in the ratio the common factors e.g. Plf b are dropped
out and only the normalization terms in the denominator
remained. The Breit—Wigner factors are also considered in
the phase-space integrals. In this way the inclusive cross sec-
tion can be expressed as it is shown in Eq. 20:

Zjeinclusive Tj (E)
Oinclusive = Oinelastic Z T/(E)

01 /Oinelastic __ Oinclusive

O1/0inclusive Oinelastic

(20)
j€inelastic
A problem with using the one-fireball ratio is the smallness
of Y T; at higher energies, which means that the probabili-
ties at higher energies for all of the one fireball possibilities
are negligible or practically zero. A solution to this prob-
lem is to use the two-fireball ratio due to their non-negligible
normalization sums even at the energies up to 15 GeV. The
inclusive cross section from strictly two-fireball channels can
be expressed in the same way with the corresponding nor-
malization sums as in Eq. 21:

Oinclusive = Oinelastic X
1
x[ Z ~ 7 | dxHi GO H;(E — x)i|/
i €Sinclusive g
1
N2 o f dx Hi(x) H(E = x)
Ni!
kl€Sinelastic
21
where ) € Simeinsive MEANS every possible two-fireball final

state from the inclusive set, which respects the conservation
laws of the initial state, and for simplicity, we defined H; (x)
as:

Ti(x)
2, Tjx)

Typically inclusive cross sections like pp — I + X are
needed where [ is a fixed particle. The inclusive sum then
includes all of the possible 2 fireball final states, which con-
tains at least once particle / in its final state, however, itis also
possible to calculate inclusive reactions like pp — I+J+X,
where I and J are two fixed particles and X is everything

Hi(x) = (22)

@ Springer

else. The generalization is straightforward and the only task
is to separate the possible 2 fireball reactions where we have
a specific number of fixed particles. For one fireball scheme,
the calculation is simple and it is possible to include every
possible two and three-body final states into the sum with
little effort, however, if one wants to calculate the ratio from
more than one fireball decays the possible number of chan-
nels are too huge and the integration would take many hours
on a standard laptop. Due to the numerical complexity, except
for one case, only the one fireball calculations are shown in
this paper, however, it can be shown that if one wants to lower
the uncertainty of the model, then taking the two fireball nor-
malization ratio is a good option to do so. To see this let us
assume that each H;(x) is a uniformly distributed random
variable with some mean © > 0 and a relative width 0.5u.
Taking the two-fireball normalization ratio the following dis-
tribution has to be calculated (Eq. 23):

M
/dx > giln)g(E —x)

i,j=1

- ,
[dx ¥ sitgiE -

i,j=1

F(E) = (23)

where g is a uniformly distributed random variable, and
M < N because M corresponds to the inclusive sum, and N
corresponds to the inelastic sum. For simplicity let us assume
that each g; is energy independent so that f(E) = f will also
be energy independent. To further simplify the problem the
ratio in Eq. 24 is calculated:

M 2
21:1 8;

N 9
> ic 812

where g; is now constant, so the integral can be factored out,
and instead of taking every possible i, j combinations, we
simply take the square of the generated g; random variables.
This will not change the main conclusion, so for the first
estimation, it is sufficient to see the relative error distribution
of the calculated ratio in Eq. 24. The relative error distribution
is calculated in the following steps:

f= (24)

1. Generate N number of uniformly distributed U[0, 1] —
g? samples. These will be the noiseless data.

2. Add a random noise to each of the g?’s so that g; =
g0+ ULg? — 0.587, g2 +0.5g°] will be the data with a
relative error of 0.5.

3. Take M number of samples from the previously generated
samples. These will correspond to the inclusive sum.

4. Calculate the ratios with the noiseless samples fy, and
with the noisy ones f.

5. Calculate the relative error r = | fo — f|/fo
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Do the previous steps many times so at the end a relative
error distribution from the calculated r’s is obtained. As has
been done previously, the estimated relative error will be the
mean of the obtained relative error distribution. The mean
relative error dependence on the number of inelastic chan-
nels (N) i = 1..100, and the number of inclusive channels
(M) j =i..100 can be seen in Fig. 4. The number of inelas-
tic channels has to be larger than the number of inclusive
ones e.g. N > M. The relative error at low multiplicity is
around 0.5, which means the accumulated relative error is
the same as the individual relative errors. If the multiplic-
ity in the numerator and in the denominator increasing the
accumulated relative error will be smaller. The main con-
clusion from this simple simulation is that if one wants to
make the estimated relative error smaller it is sufficient to
calculate e.g. the two fireball normalization sums instead of
the one fireball sums, however, its numerical complexity is
much greater. Also, the two fireball cases will cover a differ-
ent energy range due to the different thresholds and different
processes considered.

5 Results
5.1 Non-charmed hadrons

To validate the theory six channels were calculated with the
formalism showed in Sect. 3. In three process the one fireball
probability ratios were calculated and compared to the mea-
sured cross section ratios, while in one case the two fireball
ratio is calculated. The errors of the measured- and the calcu-
lated cross section ratios are also shown. The first reaction is
the pr~ — pOX, where X is any 1, 2, ...N number of parti-
cles, which allowed by the quantum number conservation of
the initial psr ~ collision, and is allowed by the specific num-
ber of fireballs we used in the calculations. To calculate the
ratio, first, the inelastic sum has to be done. The second step
is to find all the resonances which could decay into p° e.g.
Ni1700 — pN and select only those channels into the sum
(with the direct p°X channels as well). These are most of the
A-s and nucleon resonances and are taken from the PDG,
where only particles that have at least 3 stars are included.
The results can be seen in Fig. 5.

In the second example, the process pr~ — K°X is cal-
culated with one- and also with two fireball ratios in order
to compare the results. In the inclusive sum, the particles
which could decay into K -s have to be included. These are
some of the N, A, X', and K* resonances. The inelastic sum
has to include all processes which have one baryon number,
zero strangeness, zero charmness, and zero charge. The ratios
from the two- and one fireball processes are shown in Fig. 6,
where in both cases a really good agreement with the mea-
sured data is achieved. The error in the two fireball case is
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calculated from the simulation described in Sect. 4, using the
number of inelastic, and the number of inclusive channels.

The third example is the channel pp — p°X, where the
inelastic sum will be different than in the previous two reac-
tions because in pp collisions all the important conserved
quantum numbers are zero. The results are shown in Fig. 7,
where again a really good agreement is achieved even at
higher energies (15 GeV).

The fourth calculated process is the pp — p°X inclusive
channel, where the inelastic sum includes all the possible
final states with quantum numbers (baryon number, charge,
strangeness, charmeness)=(2,2,0,0). The inclusive sum con-
tains all the processes where at least one p” meson is present
and also all the relevant resonances which could decay to p°.
The results are shown in Fig. 8.
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The final non-charmed examples are the strange vector
meson K*(892)" and K*(892)~ production in 7~ p colli-
sions. The strange vector meson production is an important
tool to study the dense hadronic matter in heavy ion colli-
sions [27-29] due to their spectral function dependence on
the nuclear density and temperature. We expect the model
to give back the low energy suppression of the K*(892)~
state to the K*(892)T meson. The results can be seen in
Fig. 9, where the upper side shows the K*(892)™ ratio to
the 7~ p inelastic cross section and the lower side shows the
K*(892)~ one. Also some measured values are shown from
[25,26]. It can be deduced that the main feature (K*(892)~
suppression) can be described quite well with the model. It
should be worth noted however that for the strange quarks,
we used a constant value for the Py quark creational proba-
bility, fitted from pp — K+ K~ process at the energy range
E =~ [1.8, 2.6] GeV, which is a simplification, as the strange
quark suppression should be energy dependent, so does P;.
Nevertheless, even with this assumption the model gave back
the main qualities of the cross sections.

In every aforementioned process, a really good match is
achieved with only one fireball process considered. Using
two fireball ratios the match is even better, which corresponds
to the smaller model error estimated in the previous section.

5.2 Charmonium production

One of the models aim is to give estimates to charmonium
creation cross sections below 10 GeV, which will be very
useful inputs for upcoming transport simulations, regarding
charmonium mass shifts in heavy ion collisions. To make reli-
able estimates the model should describe well the available
low energy cross sections, which are very rare at the moment.
A good collection of data are used for fitting in [30]. In our
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model, the necessary parameter, which has to be fitted from
experiments is the charm quark creational probability (P,),
which is used to calculate the quark combinatorial factors.
Due to the much larger mass of the charm quark than the u,d,s
quarks, this value are expected to be much smaller then the
others, thus to create more than one charm-anticharm pair
is negligible in the calculations. Furthermore we expect it to
increase with energy, rather than to be a constant value. In
contrast with our previous attempt in [11], where we tried
to fix a constant P. value at one point using a fit from [30]
near threshold, with the calculation of one exclusive chan-
nel, now we have the method to fit for measured inclusive
data at higher energies. This was one of the main reasons we
extended the model to describe inclusive cross sections.
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For the quark creation probability, we expect a linear rise
with energy with the simplest assumption possible P, = aE,
where only one parameter, the slope a has to be determined.
This parameter enters into the quark number probability mass
function described by a multinomial distribution shown in
Eq. 25

N(E)!

F(N,nj)) = =———
( l) Hi:u,d,s,c ni!

[ #" (25)

i=u,d,s,c

where

1+ /14 E?/T¢§
—
is the total number of quark-antiquark pairs [31], with
hadronization temperature Ty, and P; is the quark creational
probability for thei = (u, d, s, ¢) type quarks. The expected
number of quark-antiquark pairs of type i, willbe n; = P; N,
which corresponds to the maximum of the probability mass
function. Note that the bottom quark is still missing, and we
intend to fit the corresponding Pp, value as well in the future.
The expected number of different quarks and antiquarks then
build up the hadrons in all possible ways described by simple
combinatorics, multiplied by the corresponding probability
from the probability mass function, and at the end are normal-
ized with all the possible final states, giving a final probability
to create one specific hadronic final state. As the charm quark
creation is expected to be highly suppressed only 7, = 1
is interesting at the moment, which will corresponds to a
constrained maximum value of F (N, n;) in contrast to the
non-constrained maximum, where 77, = 0. The suppression
ratio is then proportional to the charm-anticharm creational
probability, so it can be easily fitted using the suppression to
the non-charmed channels. To see this, let us assume that the
one charm-anticharm quark pair is created in expense to one
strange-antistrange quark pair, so 77, = 1, and 7, = iy — 1,
while 7, = 7, and7), = ny. The suppression ratio calculated
from the probability mass function is then:

N(E) = (26)

_ F(N,my,,my,n,n,)  AglPe
~ F(N,nty, ng, s, ne) (s — DIPy

Ve PN (2]
The derived formula for y, expresses the fact, that even with
a constant P, value, the suppression will be energy depen-
dent if Y. < 1, as the total number of quark-antiquark pairs
N are also energy dependent. After y, reaches 1 the suppres-
sion from the probability mass function is gone, so no need
to constrain the distribution anymore. The expected number
of charm-anticharm quarks then will be n, = PN, so the
transition between the suppressed and non-suppressed prob-
ability is continous. The vanishing suppression ratio here
only means, that there will be no more suppression from the
constrained probability mass function, however if P, is still
smaller than the other quark creational probabilities (which

will be the case up to a few 100 GeV), then the charm produc-
tion is still suppressed compared to the up, down and strange
quarks.

As we assumed a linear relationship between P, and the
energy, the y, suppression ratio can be expressed as:

E+E\/1+ E*/T}

5 . (28)

Ye =4

where a is the slope parameter, which has to be determined
from experiments. Using experimental charmonium produc-
tion cross section data in pN collisions, this parameter is
determined to be @ = 0.0006 GeV~! (see below), so the
charm-anticharm quark creational probability is given by
P, = 0.0006 - E. With the inclusion of another type of quark
the previous P,, Py, P fits were also have to be modified. In
the simplest case, we can assume that P,.’ = P; — P./3 for
i = (u,d,s),sothat P, + P, 4+ P/ 4+ P. = 1 holds, however
due to the small value of P, in the energy range below a 100
GeV, we get P, ~ P,, P} ~ P4, P| ~ Py, so the previously
used values for the u, d, s quarks can still be used in this
energy range.

To calculate the cross sections the two fireball probabili-
ties are used, as it gives smaller uncertainties, with the price
of taking much longer time to calculate the normalization
factors. We intend to describe the available low energy p N
and w N data with the model for which, we selected some
experimental points below 10 GeV from the collection in
[30]. At this stage the uncertainties in the experiments are
not really important as the main goal is to describe the 2-3
times larger cross sections of the 7 N collisions in contrast
to the pN collisions. To this end, and to check the model
predictability, only one measurement point is used to the fit
from the pN data at E ~ 10 GeV, which is enough, as we
only have one free parameter in P., namely a. The tuning
was done by hand to approximately give the correct value at
the one point used for the fit. For the cross sections the decays
from ¥ (3686), x.1 and x.2 mesons are also included, how-
ever as there are no bottom quarks in the current model the
decays from hadrons containing b quarks are not included.
After the tuning of the slope parameter, the full cross sections
were calculated for the pp and for the 7~ p case. The results
can be seen in Fig. 10 and in Fig. 11. The calculations show a
good match with the data for both cases even with the simple
form of the P, and with the restricted one point fit, thus it can
be concluded that the main feature of the 7 N enhancement
is described well in the model.

To test the model capabilities further the proton-antiproton
to proton-proton inclusive J /¥ cross section ratio is calcu-
lated at E = 24.3 GeV CM energy, which is measured in
[32] with a good accuracy. The results with the uncertainties
are shown in Table 1, where a remarkably good agreement
with the measured value is achieved.
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The method thus proved to be able to give satisfactory
results to low/medium energy charmonium cross sections,
however putting more particles (e.g. B mesons) into the
model could change the higher energy parts of the cross sec-
tions, meaning the P, quark creational probabilities might
have to be further fine tuned. Also for P, a very simple lin-
ear assumption was made, and it could be interesting to give
a theoretical background to its nature. This also applies to
the strange quark creational probability Py, where we simply
assumed a constant value throught the whole energy range
we are interested in.

@ Springer

Table 1 Inclusive J /¥ cross section ratio for (pp — J/¥X)/(pp —
J /W X) collisions at 4/s = 24.3 GeV. Data is taken from [32]

Measurement Model

Ratio 0.76 £ 0.14 £ 0.06 0.73 +£0.15

6 Conclusion

In this paper, a statistical model is introduced based on the
statistical Bootstrap approach, which is able to give reason-
able good estimates to hadronic cross section ratios up to a
few GeV energy range. The full normalization sum is calcu-
lated for one and two fireball decay schemes. The cross sec-
tion ratios for eight different processes were compared to the
model calculations. From the calculated relative errors, the
model uncertainty is also estimated giving an overall energy
independent relative error for the one fireball decay proba-
bility. The calculated normalized probabilities are in good
agreement with the measured values. The model is extended
to give inclusive cross sections from the ratios of the normal-
ization sums, which is validated through six distinct inclusive
non-charmed processes, namely, pr~ — pOX , ptT —
K°X, pn— — K*tX, pn— — K* X, pp — p°X and
pp — p°X, where in each case a really good match with
measured data is achieved. The charm quark creational prob-
ability is fitted with the help of the pN — J/W¥ X inclusive
data, allowing us to give estimates to charmed final states as
well. The model is further validated through two charmed
processes, namely pp — J/W X andn™ p — J/¥ X, both
giving good results compared to the experimental data. For
a last application the (pp — J/¥X)/(pp — J/W¥ X) ratio
is calculated at /s = 24.3 GeV giving a really good match
with the experimental data. The method will be highly use-
ful in describing previously unknown or not well measured
inclusive cross sections e.g. charmonium creational proba-
bilities and will be used in a BUU type [1,33,34] off-shell
[35] transport code to study the propagation of these states
in dense nuclear matter.
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