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Abstract The relativistic density functional with minimal
density dependent nucleon–meson couplings for nuclei and
nuclear matter is extended to include tensor couplings of the
nucleons to the vector mesons. The dependence of the mini-
mal couplings on either vector or scalar densities is explored.
New parametrisations are obtained by a fit to nuclear observ-
ables with uncertainties that are determined self-consistently.
The corresponding nuclear matter parameters at saturation
are determined including their uncertainties. An improve-
ment in the description of nuclear observables, in particular
for binding energies and diffraction radii, is found when ten-
sor couplings are considered, accompanied by an increase
of the Dirac effective mass. The equations of state for sym-
metric nuclear matter and pure neutron matter are studied
for all models. The density dependence of the nuclear sym-
metry energy, the Dirac effective masses and scalar densities
is explored. Problems at high densities for parametrisations
using a scalar density dependence of the couplings are iden-
tified due to the rearrangement contributions in the scalar
self-energies that lead to vanishing Dirac effective masses.

1 Introduction

Since the application of the relativistic mean-field (RMF)
approach in the framework of quantum hadron dynamics,
various kinds of a relativistic energy density functionals
(EDFs) have been developed in the theoretical description
of atomic nuclei and nuclear matter, see, e.g., [1–4]. In these
types of phenomenological approaches the strong interac-
tion between nucleons is described in an effective way by
the exchange of mesons. In most cases a minimal coupling
of mesons to the nucleons is considered with a strength that
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is determined by the corresponding coupling constants. As
a result every nucleon i moves in vector (Vi ) and scalar (Si )
mean fields. Although the effective interaction in an EDF
shares some similarities with realistic one-boson exchange
(OBE) potentials due to general features of the strong inter-
action, it has a more simplistic structural form and cannot
describe the free nucleon–nucleon scattering quantitatively.
The model parameters are treated as independent quanti-
ties without assuming constraints from theoretical consid-
erations, e.g., relations between different couplings as in
OBE potentials. The coupling strengths between mesons
and nucleons in the EDF are usually obtained by fitting the
model predictions of nuclear observables to experimental
data. Sometimes also nuclear matter parameters, which are
extracted indirectly from properties of nuclei or experiments
with heavy-ion collisions, are used as constraints. In order to
obtain a good quantitative description, a medium dependence
of the effective interaction has to be considered. This is most
often realized by nonlinear self-couplings of the mesons or a
density dependence of the nucleon–meson couplings. Many
parametrisations [5] have been developed for different appli-
cations. The effects of other types of interaction vertices, e.g.,
with derivative couplings [6–15] or tensor couplings, are less
intensively explored.

Relativistic EDFs are derived originally in the mean-
field or Hartree approximation starting from a covariant
Lagrangian density with nucleon and meson fields as degrees
of freedom. This means that the many-nucleon wave func-
tion is a simple product of single particle states that are
occupied according to Fermi-Dirac statistics but an explicit
antisymmetrisation of the many-nucleon wave function, e.g.,
in form of a Slater determinant, is not considered. Only
later, exchange or Fock terms were taken into account in the
construction of relativistic EDFs, usually called relativistic
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Hartree–Fock (RHF) models, see, e.g., [16–20]. In this work
the relativistic Hartree approach is utilized because it is more
transparent and less involved from a computational point of
view. Density dependent meson–nucleon couplings in a full
RHF model with finite-range interactions would also intro-
duce some complications in the derivation of the field equa-
tions that are difficult to treat completely self-consistently in
actual calculations.

The first parametrisation of a RMF model with ω and ρ

tensor couplings, VT, found from a fit to nuclear observables,
was introduced in [21]. A systematic variation of the coupling
strengths showed no strong sensitivity of most observables to
the tensor contributions and only a slight improvement with
a finite ω tensor coupling. However, a decrease of the incom-
pressibility K of nuclear matter and larger effective nucleon
masses were found. The application of RMF calculations
with a ρ tensor coupling was extended from spherical to
deformed nuclei in [22]. The dependence of spin-orbit split-
tings on the strength of the ρ tensor coupling was explored in
[23]. Adding a ρ tensor coupling to existing RMF parametri-
sations, the modification of the neutron skin thickness of
nuclei was studied later in [24]. Tensor coupling terms were
derived from a systematic expansion in an effective approach
using chiral symmetry in [25] and two new parametrisations,
G1 and G2, were obtained by a fit to nuclear observables with
much stronger ρ tensor couplings than ω tensor couplings.
The effects on spin-orbit splittings and the effective mass
were studied in [26]. Small effects were found in another
parametrisation, NL-VT1, determined in the framework of
RMF models with nonlinear self-couplings of the mesons,
which was applied to the study of super-heavy nuclei [27].
The same interaction was used in [28] for a comparison of
single-particle spectra in comparison to other EDFs. The
modification of nuclear magnetic moments by isoscalar ten-
sor couplings was already investigated in [29] and a possible
origin in the framework of RMF models was discussed there.
Tensor couplings of nucleons to ω and ρ mesons in RHF cal-
culations were considered first in [17] and several studies
followed. For instance, in [30] the influence of tensor cou-
plings on pseudospin-orbit splittings was investigated, and in
[31] a new parametrisation, PKA1, for RHF calculations with
density dependent couplings was introduced. The effects on
the evolution of shell gaps and spin-orbits splittings were
explored in [32] and in [33], respectively, in comparison to
other relativistic EDFs. Another series of RHF parametrisa-
tions was presented in [34] with an extensive exploration of
the effects. The Zimanyi–Moszkowski version of the RMF
Lagrangian was generalized in [35] with a ω tensor coupling
contribution to increase the small spin-orbit splitting of the
original model. In spite of all these investigations no compre-
hensive understanding of the role and importance of tensor
couplings in relativistic EDFs has been reached and, hence,
they are usually not taken into account in most models.

A specific feature of tensor couplings is the fact that they
contribute to the strength of the spin-orbit splitting in nuclei.
In standard RMF calculations of spherical nuclei the size of
the energy splitting between single-nucleon levels of iden-
tical orbital angular momentum l but different total angular
momentum j = l ± 1/2 is tightly correlated with the scalar
potential Si and the Dirac effective mass m∗

i = mi − Si of a
nucleon i with vacuum mass mi . The introduction of tensor
couplings can lift this correlation and allows to increase the
effective mass that is usually considered to be smaller than
expected to describe the level density near the Fermi energy.
In calculations of nuclear matter, however, tensor couplings
do not contribute in the conventional mean-field approxima-
tion of spatially uniform systems since their effect depends
on spatial derivatives of densities.

It was realized early on that an effective medium depen-
dence of the interaction has to be included in relativistic
approaches in order to improve the description of nuclei and
nuclear matter quantitatively. One major class of models con-
siders a self-coupling or cross-coupling of the mesons lead-
ing to an increase of the number of model parameters. A
second class introduces a density dependence of the meson–
nucleon couplings. It can be arbitrarily varied depending on
the selected form of the function. In addition, a specific fea-
ture of relativistic models can be exploited in this approach.
There are various types of densities and currents that can be
formed in a Lorentz covariant way from the nuclear wave
functions and that can enter as argument in the coupling
functions. The most common approach is a so-called vec-
tor density dependence. In contrast, scalar or other density
dependencies are hardly used in recent EDF parametrisations
even though they were discussed in some of the first applica-
tions of the RMF model [36,37]. Depending on the choice of
a vector or scalar density dependence, so-called rearrange-
ment terms appear in the vector or scalar mean fields, respec-
tively, in addition to the regular meson contributions. They
are essential for the thermodynamic consistency of the theory.
Differences between models with different density depen-
dencies seem to be small in the density range where they are
constrained by nuclear data but problems may arise in some
parts of the phase diagram of nuclear matter under particular
conditions [38].

In this work a new set of parametrisations for relativistic
EDFs is introduced with a vector or a scalar density depen-
dence of the couplings and the effects of tensor couplings
are studied. The model parameters are usually determined
by minimising an objective function that depends on the
differences between calculated and measured nuclear data
weighted by (inverse) uncertainties. The latter are mostly
set heuristically to certain fixed values. These are assumed
to be of reasonable size matching the expected quality of
the model. These uncertainties are generally larger than the
experimental errors of the considered nuclear data. Here a
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modified approach is followed. It allows to adjust the uncer-
tainties during the determination of the model parameters in
the fitting procedure, see, e.g., [39]. Thus the uncertainties are
obtained in a self-consistent way and give a new possibility
to judge the quality of the EDF.

The approach presented here stays on the mean-field
level and does not consider any effects beyond this approx-
imation. Beyond mean-field effects are known to have a
noticeable impact, e.g., on single-particle spectra and excited
states of nuclei which are, however, not examined in this
work. There are different ways of treating beyond mean-
field effects, e.g., by studying collective correlations and their
fluctuations related to the restoration of broken symmetries
or by applying (quasi-particle) random phase approxima-
tion (RPA) methods looking at collective phonon states and
particle-vibration couplings. See, e.g., [40–56] in the context
of relativistic models. Going beyond the mean-field approx-
imation requires usually a complete refit of the EDF param-
eters to be consistent. This is computationally very involved
and beyond the scope of the present work. The main aim is to
establish tensor couplings as a useful ingredient in relativistic
EDF calculations.

The content of this study is organised as follows: In Sect. 2
the theoretical formalism is introduced assuming a density
dependence of the minimal meson-nucleon couplings sup-
plemented with tensor couplings of the nucleons to ω and
ρ mesons. The specific applications of the model to spheri-
cal nuclei and cold uniform nuclear matter are discussed in
detail. The procedure to determine the model parameters is
outlined in Sect. 3. This includes the choice of the coupling
functions, the observables and nuclei as well as the defini-
tion of the objective function. Furthermore a set of EDFs is
defined that take different effects into account. A presenta-
tion of the results follows in Sect. 4 with numerical details
of various EDF parametrisations, the corresponding nuclear
matter parameters, figures with the density dependence of
various quantities and a discussion of the fit quality. Conclu-
sion are given in Sect. 5. The derivation of the rearrangement
contributions to the scalar and vector potentials of the nucle-
ons is presented in Appendix A and the conversion of model
parameters is discussed in Appendix B.

2 Relativistic energy density functional

The traditional starting point to derive a relativistic EDF is a
Lagrangian density L with nucleons and mesons as degrees
of freedom. Here we follow mostly the notation in [38] and
include the necessary terms for the tensor couplings. Natural
units with h̄ = c = 1 are used throughout. Neutrons (i =
n) and protons (i = p) are represented by four-spinors Ψi .
Hyperons or other baryons are not considered in the present
work. Usually, four types of mesons are considered: isoscalar

ω and σ mesons and isovector ρ and δ mesons where the first
of the two pairs is a Lorentz vector field and the second is
a Lorentz scalar. The corresponding fields carry the same
quantum numbers as the experimentally observed mesons
but cannot necessarily be identified with them directly. In
order to have a clear and simple representation, their fields
are denoted with the same symbol as their name, however
Lorentz vector mesons carry an index due to their four-vector
nature. Quantities in bold face can be vectors in coordinate
space or in isospin space depending on the context. Besides
mesons the electromagnetic interaction is included using the
symbol Aμ for the field. All relevant equations can be derived
from L by standard procedures depending on the employed
approximations.

2.1 Lagrangian density and field equations

The relativistic Lagrangian density can be written as a sum

L = Lnucleon + Lmeson + Lγ (1)

of three contributions. The first one

Lnucleon =
∑

i=p,n

Ψ i
(
γμi Dμ

i − σμνT μν
i − M∗

i

)
Ψi (2)

contains the nucleon fields Ψi , Ψ i = Ψ
†
i γ 0 and their cou-

pling to the meson fields with standard relativistic matrices
γμ and σμν . In the covariant derivative

i Dμ
i = i∂μ − Γ̃ωωμ − Γ̃ρρμ · τ − Γγ Aμ 1 + τ3

2
(3)

the Lorentz vector mesons ω and ρ appear. The isospin matri-
ces τk (k = 1, 2, 3) are components of the vector τ in isospin
space in analogy of the Pauli matrices σk . Γγ is the electro-
magnetic coupling constant and Γ̃ j are the meson-nucleon
couplings that are functionals of the nucleon fields Ψi and
Ψ i . The effective mass operator for neutrons (i = n) and
protons (i = p) with vacuum rest mass mi

M∗
i = mi − Γ̃σ σ − Γ̃δδ · τ (4)

depends on the Lorentz scalar fields σ and δ. Finally, the
contribution with the tensor coupling

T μν
i = ΓT ω

2m p
Gμν + ΓTρ

2m p
Hμν · τ (5)

contains the field tensors Gμν = ∂μων − ∂νωμ and Hμν =
∂μρν − ∂νρμ of the Lorentz vector mesons. Due to the fac-
tor m p in the denominator, the couplings ΓT ω and ΓTρ are
dimensionless quantities. There is no standard convention in
the literature on how to write the tensor coupling term. Thus
the size of the couplings is not always comparable immedi-
ately. The term
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Lmeson

= 1

2

(
∂μσ∂μσ − m2

σ σ 2 + ∂μδ · ∂μδ − m2
δ δ · δ

−1

2
GμνGμν + m2

ω ωμωμ − 1

2
Hμν · Hμν + m2

ρ ρμ · ρμ

)
(6)

in (1) describes the free mesons and

Lγ = −1

4
Fμν Fμν (7)

with Fμν = ∂μ Aν − ∂ν Aμ is the contribution of the electro-
magnetic field Aμ.

The couplings Γ̃ j of the mesons j = σ , ω, ρ or δ in (3)
and (4) depend either of the vector density

�v = √
jμ jμ (8)

with the total nucleon current

jμ =
∑

i=p.n

∑

k

wik Ψ ikγ
μΨik (9)

or the scalar density

�s =
∑

i=p,n

∑

k

wik Ψ ikΨik . (10)

where k defines the single-particle state and wik is the occu-
pation factor. Both quantities defined in (8) and (10) are
Lorentz scalars.

From the Lagrangian density (1) the field equations of
all degrees of freedom are found from the Euler-Lagrange
equations treating the mesons and the electromagnetic field
as classical fields. Applying the usual mean-field and no-
sea approximation and exploiting the symmetries of a sta-
tionary system, the field equations assume a simple form in
a particular frame of reference. The couplings Γ̃ j become
simple functions Γ j depending on the total vector density

n(v) = n(v)
p +n(v)

n or the total scalar density n(s) = n(s)
p +n(s)

n

with single nucleon contributions given below.
In the case of a nucleus with spherical symmetry, the wave

function ψik of a nucleon i in single-particle states k is a
solution of the time-independent Dirac equation

Ĥiψik(r) = Eikψik(r) (11)

with single-particle energy Eik and the Hamiltonian

Ĥi =
[
α · p̂ + β (mi − Si ) + Vi + iγ · r

r
Ti

]
(12)

that contains three types of potentials. Due to the symmetries,
only a single component of the Lorentz vector and isospin
vector fields remains. Thus the notation is simplified to δ, ω0,
ρ0 and A0 without an additional index for the isospin.

The scalar potential

Si = giσ Γσ σ + giδΓδδ + S(R) (13)

and the vector potential

Vi = giωΓωω0 + giρΓρρ0 + giγ Γγ A0 + V (R) (14)

contain rearrangement contributions

S(R) = dΓσ

dn(s)
nσ σ + dΓδ

dn(s)
nδδ

− dΓω

dn(s)
nωω0 − dΓρ

dn(s)
nρρ0 (15)

if the couplings depend on the scalar density or

V (R) = dΓω

dn(v)
nωω0 + dΓρ

dn(v)
nρρ0

− dΓσ

dn(v)
nσ σ − dΓδ

dn(v)
nδδ (16)

if the couplings depend on the vector density. The deriva-
tion of these rearrangement contributions is given in detail
in appendix A. The factors gnσ = gpσ = gnω = gpω =
−gnρ = gpρ = −gnδ = gpδ = gpγ = 1 and gnγ = 0 in
(13) and (14) reflect the different coupling of neutrons and
protons to the meson fields. The quantities nσ , nδ , nω, and
nρ are source densities in the field equations of the mesons.
They are given in Sect. 2.2. The tensor potential

Ti = − fiω
ΓT ω

m p

r
r

· ∇ω0 − fiρ
ΓTρ

m p

r
r

· ∇ρ0 (17)

with f pω = fnω = f pρ = − fnρ = 1 depends on the deriva-
tives of the meson fields and is particularly large at the surface
of a nucleus due to the rapid change of the meson fields.

The field equations of the mesons can be written as

−Δσ + m2
σ σ = Γσ nσ (18)

−Δδ + m2
δδ = Γδnδ (19)

−Δω0 + m2
ωω0 = Γωnω + ΓT ω

m p
∇ · jT ω (20)

−Δρ + m2
ρρ = Γρnρ + ΓTρ

m p
∇ · jTρ (21)

with tensor currents

jT ω =
∑

i=p,n

∑

k

wik Ψ ik iαΨik (22)

and

jTρ =
∑

i=p,n

∑

k

wik Ψ ik iατ0Ψik (23)

for the Lorentz vector mesons. The electromagnetic field is
determined by the Poisson equation

− ΔA0 = Γγ nγ (24)

without a mass term.
In case of nuclear matter, the tensor potential (17) is zero

and the meson field equations reduce to a simple form without
derivative terms. Furthermore the electromagnetic field A0

vanishes.
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2.2 Nucleon wave functions and densities

In a spherical nucleus, the wave function of a nucleon in the
single-particle state k is conveniently represented by the two
component form

Ψik(r) = 1

r

(
Fiκk (r)Yκk mk (r̂)

iGiκk (r)Y−κk mk (r̂)

)
(25)

with real radial wave functions Fiκk and Giκk . The spin-
spherical harmonics Yκk mk describe the angular and spin
dependence of the state that is characterized by the quan-
tum number κk = ±1, ±2, …and the projection mk =
− jk, . . . , jk with total angular momentum jk = |κk | − 1/2
and orbital angular momentum lk = jk − κk/(2 |κk |).

The radial wave functions Fiκk and Giκk are found by
solving the eigenvalue problem

Hik

(
Fiκk

Giκk

)
= Eik

(
Fiκk

Giκk

)
(26)

with the Hermitian matrix

Hik =
(

mi − Si + Vi − d
dr − κk

r + Ti
d
dr − κk

r + Ti −mi + Si + Vi

)
(27)

and the boundary conditions Fiκk (0) = Giκk (0) = 0
and limr→0 Fiκk (r) = limr→0 Giκk (r) = 0 for bound
single-particle states. In the actual numerical calculation the
Lagrange-mesh method [57] is used.

Assuming equal occupation of the sub-states for a given
κk to guarantee the sphericity of the source densities and
potentials, the single-particle vector density is given by

n(v)
ik = 1

4πr2

[
|Fik(r)|2 + |Gik(r)|2

]
(28)

with the normalization
∫

d3r n(v)
ik = 1. (29)

The scalar density has the form

n(s)
ik = 1

4πr2

[
|Fik(r)|2 − |Gik(r)|2

]
(30)

and the tensor current can be written as

j(t)ik = n(t)
ik

r
r

(31)

with the density

n(t)
ik = 1

4πr2

[
F∗

ik(r)Gik(r) + Fik(r)G∗
ik(r)

]
. (32)

A summation over all single particle states gives the total
scalar (a = s), vector (a = v) and tensor (a = t) densities

n(a)
i =

∑

k

wikn(a)
ik (33)

for protons and neutrons. The quantities wik = 0 or wik = 1
are the occupation factors for the different single-particle

states with
∑

k wpk = Z and
∑

k wnk = N when Z and N
are the charge and neutron number of the nucleus, respec-
tively. Then the source terms in the meson and electromag-
netic field equations (18)–(24) can be expressed as

n j =
∑

i=p,n

gi j n
(s)
i (34)

for the scalar mesons j = σ , δ and

n j =
∑

i=p,n

gi j n
(v)
i (35)

for the vector mesons j = ω, ρ and the electromagnetic field
j = γ . The tensor currents in (20) and (21) are

jT j =
∑

i=p,n

gi j n
(t)
i

r
r

(36)

for j = ω, ρ.
For nuclear matter at zero temperature the solutions of the

Dirac equation (11) are simple plane waves depending on
a momentum pi . The summation over individual states k is
replaced in the continuum approximation by an integration
over momenta up to the Fermi momentum p∗

i and the total
vector density can be written as

n(v)
i = gi

∫ p∗
i

0

d3 pi

(2π)3 = gi

6π2

(
p∗

i

)3 (37)

with degeneracy factor gi = 2 for the spin 1/2 nucleons. The
total scalar density is

n(s)
i = gi

∫ p∗
i

0

d3 pi

(2π)3

m∗
i√

(pi )
2 + (

m∗
i

)2

= gi m∗
i

4π2

[
p∗

i μ∗
i − (

m∗
i

)2 ln
p∗

i + μ∗
i

m∗
i

]
(38)

with the effective chemical potential

μ∗
i = μi − Vi =

√(
p∗

i

)2 + (
m∗

i

)2 (39)

and the Dirac effective mass

m∗
i = mi − Si . (40)

The tensor currents (22) and (23) entering the meson field
equations (20) and (21) give no contribution in nuclear matter
since they do not vary in space.

2.3 Energy density functional

The energy density ε of the considered system is obtained
from the energy-momentum tensor. It can be expressed as a
sum

ε = εnucleon + εfield (41)
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of two contributions for a nucleus with a simple summation

εnucleon =
∑

i=p,n

∑

k

wik Eikn(v)
ik (42)

over the single-particle states in the first term and the field
energy density

εfield = 1

2

(
∇σ · ∇σ + m2

σ σ 2 + ∇δ · ∇δ + m2
δδ

2

−∇ω0 · ∇ω0 − m2
ωω2

0 − ∇ρ0 · ∇ρ0 − m2
ρρ2

0

−∇A0 · ∇A0) − V (R)n(v) + S(R)n(s) (43)

with rearrangement contributions and total vector and scalar
densities n(v) = n(v)

p + n(v)
n and n(s) = n(s)

p + n(s)
n , respec-

tively. Integrating over all space the total energy

E =
∑

i=p,n

∑

k

wik Eik

+1

2

∫
d3r

{
Γσ nσ σ + Γδnδδ − Γγ nγ A0

−
[
Γωnω + ΓT ω

m p
∇ · jT ω

]
ω0

−
[
Γρnρ + ΓTρ

m p
∇ · jTρ

]
ρ0

−V (R)n(v) + S(R)n(s)
}

(44)

is found with explicit tensor contributions when the field
equations and partial integrations are applied.

In the case of cold nuclear matter the energy density can
be expressed as

ε =
∑

i=p,n

εkin
i + 1

2

∑

j=σ,δ

(
C j + n(s) D(s)

j

)
n2

j

+1

2

∑

j=ω,ρ

(
C j − n(s) D(s)

j

)
n2

j (45)

with the kinetic contribution

εkin
i = 1

4

[
3μ∗

i n(v)
i + m∗

i n(s)
i

]
(46)

and the factors C j = Γ 2
j /m2

j and their derivatives D(s)
j =

dC j/dn(s) with respect to the scalar density. The latter are
nonzero only for couplings Γ j that depend on the scalar den-
sity n(s). The pressure assumes the form

p =
∑

i=p,n

pkin
i − 1

2

∑

j=σ,δ

(
C j + n(s) D(s)

j + n(v) D(v)
j

)
n2

j

+1

2

∑

j=ω,ρ

(
C j + n(s) D(s)

j + n(v)D(v)
j

)
n2

j (47)

with the kinetic contribution

pkin
i = 1

4

[
μ∗

i n(v)
i − m∗

i n(s)
i

]
(48)

and the derivatives D(v)
j = dC j/dn(v) with respect to the

vector density. In contrast to the pressure (47) there are no
contributions from terms with D(v)

j in the energy density (45).
The thermodynamic relation

ε + p =
∑

i=p,n

μi n
(v)
i (49)

with the chemical potentials μi , see (39), is easily verified.
For the calculation of the incompressibility K of symmet-

ric nuclear matter at the saturation density nsat it is useful to
know the density derivative of the pressure in isospin sym-
metric nuclear matter. For this purpose also the second deriva-
tives E (s)

j = d2C j/d(n(s))2 and E (v)
j = d2C j/d(n(v))2 are

needed. With n(s) = nσ and n(v) = nω in this case, the
derivative of the pressure is given by the lengthy general
expression

dp

dn(v)
= 1

3

[
μ∗ − m∗ dn(s)

dn(v)

]
(50)

−
(

D(v)
σ + 1

2
n(v)E (v)

σ

)
(n(s))2

+
(

D(v)
ω + 1

2
n(v)E (v)

ω

)
(n(v))2

+
(

Cω + n(s) D(s)
ω + n(v)D(v)

ω

)
n(v) (51)

−
(

Cσ + n(s) D(s)
σ + n(v) D(v)

σ

)
n(s) dn(s)

dn(v)

−
(

D(s)
σ + 1

2
n(s)E (s)

σ

)
dn(s)

dn(v)
(n(s))2

+
(

D(s)
ω + 1

2
n(s)E (s)

ω

)
dn(s)

dn(v)
(n(v))2 (52)

with the derivative

dn(s)

dn(v)
=

[
m∗

μ∗ + f
(

D(s)
ω n(v) − D(v)

σ n(s)
)]

{
1 + f

[
Cσ + 1

2
E (s)

σ (n(s))2

+2D(s)
σ n(s) − 1

2
E (s)

ω (n(v))2
]}−1

(53)

that contains the factor

f = 3

(
n(s)

m∗ − n(v)

μ∗

)
. (54)

Then the incompressibility is found from

K = 9
dp

dn(v)

∣∣∣∣
nsat

(55)

at the saturation density. For a vector density dependence of
the couplings, the terms with D(s)

j and E (s)
j vanish. Analo-

gously, D(v)
j = E (v)

j = 0 for a scalar density dependence.

123



Eur. Phys. J. A (2020) 56 :160 Page 7 of 20 160

The symmetry energy of nuclear matter is given by

Esym(nb) = 1

2

∂2

∂δ2

E

A
(56)

as a second derivative of the energy per nucleon

E

A
= ε

nb
(57)

with respect to the neutron–proton asymmetry δ = (n(v)
n −

n(v)
p )/nb where nb = n(v) = n(v)

n + n(v)
p is the baryon den-

sity. The symmetry energy at saturation J = Esym(nsat) and
the slope parameter L = d Esym/dnb

∣∣
nb=nsat

are then easily
obtained. The so-called volume part of the isospin incom-
pressibility [5]

Kτ,v = Ksym − 6L − QL

K
(58)

quantifies the change of the incompressibility of nuclear mat-
ter with the isospin asymmetry δ. It contains the incompress-
ibility of the symmetry energy

Ksym = 9n2
sat

d2 Esym

d(nb)2

∣∣∣∣∣
nsat

, (59)

the quantities L and K , and the skewness parameter

Q = 27n3
sat

∂2

∂(nb)3

E

A

∣∣∣∣
nsat,δ=0

(60)

which is proportional to the third derivative of the energy
per nucleon with respect to the baryon density. It describes
the deviation of E/A in symmetric nuclear matter from a
parabolic dependence on nb near the saturation point.

3 Determination of model parameters

The nuclear EDF with density dependent couplings consti-
tutes a phenomenological approach to describe properties of
nuclei and nuclear matter. It depends on some parameters
that have to be determined so that the calculated observables
agree with experimental data as far as possible. The state-
ment of ’best agreement’ has to be made more precise and
quantitative by defining an objective function that depends
on the selected observables, the associated uncertainties and
its functional form. Once it is fixed the parameters of the
model can be found by appropriate numerical fitting strate-
gies. Usually the objective function is not changed during the
process of parameter determination. However, in the present
study, the uncertainties of the different observables will be
adjusted in order to find values that give a true representation
of their size.

3.1 Parameters and density dependence of couplings

Some parameters in the density functional are kept constant
during the fitting procedure. These are the masses of the
nucleons and that of the ω, ρ, and δ meson. In this work the
same values as in [38] are used, i.e., m p = 938.272081 MeV,
mn = 939.565413 MeV, mω = 783 MeV, mρ = 763 MeV,
and mδ = 980 MeV. In constrast, the mass mσ of the σ

meson is used as a variable parameter because it has the
longest range of the mesons with the strongest finite-range
effects.

All other parameters enter via the couplings of the mesons
with the nucleons. Their number will depend on the func-
tional form of the density dependence and the way it is
parametrised. All couplings can be written in the form

Γ j (n) = Γ
(0)
j f j (x) (61)

with a constant Γ
(0)
j = Γ j (nref) at a reference density nref

and an arbitrary function f j that depends on an argument
x = n/nref with condition f j (1) = 1. The density n can
be the vector density n(v) or the scalar density n(s). In the
present work we use the rational form

f j (x) = a j
1 + b j (x + d j )

2

1 + c j (x + d j )2 (62)

as introduced in [58] with four parameters a j , b j , c j , and d j

for the isoscalar σ and ω meson. The normalisation condition
at nref , i.e., x = 1, fixes a j = [1 + c j (1 + d j )

2]/[1 +
c j (1 + d j )

2]. As a second constraint on the function (62)
the condition f ′′

j (0) = 0 is demanded. This leads to the

relation 3c j d2
j = 1. In total there are only two independent

parameters, e.g., b j and c j , for the density dependence of the
isoscalar mesons ω and σ . For the isovector ρ and δ mesons
the same exponential form

f j (x) = exp[−a j (x − 1)] (63)

as in [58] is chosen with a single parameter a j . The tensor
couplings ΓT ω and ΓTρ are assumed to be constant. In prin-
ciple, the parameters entering the coupling functions can be
used directly in the fitting procedure. However, they can be
highly correlated and it is more convenient to use nuclear
matter parameters as independent variables. See Appendix
B for the conversion of one set of parameters to the other.

3.2 Observables

The parameters of the relativistic energy density functional
can be determined by fitting experimental observables of
atomic nuclei and empirical data of nuclear matter that are
obtained with extrapolation methods from nuclear observ-
ables. Since these nuclear matter quantities might be affected
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by some model dependence in such a process, only directly
observable quantities of nuclei are considered in this work.

There are three types of nuclear observables that are con-
sidered in this work: binding energies, quantities related to
the charge form factor, and spin-orbits splittings derived from
single-particle energies of the nucleons. The binding energy
BN ,Z of a nucleus with N neutrons and Z protons is obtained
from the total energy (44). Since the long-range behaviour of
the Coulomb field, which is obtained from solving Eq. (24), is
not correct for the motion of a proton with respect to the core
of a nucleus in the mean-field approximation, a correction is
applied by multiplying the field with a factor (Z − 1)/Z for
a nucleus with Z protons. The theoretical values of the bind-
ing energies can only be compared to experimental data if a
center-of-mass correction E (cm)

N ,Z is subtracted from the total
energy (44). This correction is calculated as the expectation
value

E (cm)
N ,Z =

〈
P̂

2

2MN ,Z

〉
(64)

from the total many-body wave function with the total
momentum P̂ = ∑A

n=1 p̂n that is as sum of all nucleon
momenta and MN ,Z = Nmn + Zm p. A center-of-mass
correction is also applied in the calculation of the charge
form factor from the charge distribution of the nucleus as
explained in [38]. From the charge form factor the charge
radius, diffraction radius and surface thickness are extracted,
see [21] for details. Finally spin-orbit splittings of nuclear
level pairs with equal l and j = l ± 1/2 close to the Fermi
energies of neutrons and protons are used as observables.
Their values are obtained from the excitation energy spec-
trum of neighboring nuclei with one nucleon more or less
than the nucleus of interest. This method is most reliable only
for closed-shell nuclei where prominent single-particle res-
onances are found and a fragmented distribution of strength
over several levels is not observed.

Since pairing effects are not included in the present den-
sity functional calculations, the set of nuclei in the fit of the
parameters reduces further to those where these effects are
unimportant. Thus the set of nuclei used here is rather lim-
ited. It comprises 16O, 24O, 40Ca, 48Ca, 56Ni, 90Zr, 100Sn,
132Sn, and 208Pb but the essential effects of the choice of
the couplings on the quality of the fit can already be seen
clearly. The experimental data for these nuclei are given in
table 1 of reference [38]. There are N (obs)

1 = 9 experimental

data for the binding energy, N (obs)
2 = 6 for the charge radius,

N (obs)
3 = N (obs)

4 = 5 for the diffraction radius and the sur-

face thickness, and N (obs)
5 = 12 for the spin-orbits splittings,

hence Nobs = 5 different observables and Ndata = 37 exper-
imental data in total.

3.3 Objective function and uncertainties

The optimal fit of the model parameters to the experimental
data is found from a minimisation of the function

χ2({pk}) =
Nobs∑

i=1

χ2
i ({pk}) (65)

with

χ2
i ({pk}) =

N (obs)
i∑

n=1

[
O(exp)

i (n) − O(model)
i (n, {pk})

ΔOi

]2

(66)

for each observable i by varying the parameters pk . This is
achieved in the multidimensional parameter space by apply-
ing the simplex method as specified in [59]. However, the
uncertainties ΔOi are not kept constant during the fit as
in [38]. Before the iteration starts, reasonable values of the
parameters pk and their possible variation Δpk ≈ pk/100
are defined. Also appropriate uncertainties ΔOi are cho-
sen guided by typical uncertainties of EDFs, e.g., 1.5 MeV
for binding energies, 0.5 MeV for spin-orbit splittings and
0.02 fm for radii and surface thicknesses. During the iter-
ation, the corner points of the simplex are moved in the
direction of lower χ2 and the allowed variation Δpk of the
parameters is adjusted depending on the needed expansion
or contraction of the simplex to reduce χ2. After one hun-
dred iterations through all parameters the uncertainties of the
observables ΔOi are re-scaled so that χ2

i ({pk})/N (obs)
i is the

same for all observables and

χ2({pk})/Ndof = 1 (67)

with the number of degrees of freedom Ndof = Ndata − Npar

and the number of data Ndata = ∑Nobs
i=1 N (obs)

i = 37. This
means that every experimental data point contributes on the
average equally to the total uncertainty. The cycle of itera-
tions is repeated several times until the variation of the param-
eters falls below 2 ·10−6. The procedure is also repeated with
different initial conditions to check for the stability of the
obtained minimum. Under this condition, the obtained uncer-
tainties are determined self-consistently with the energy den-
sity functional and have a reasonable size. Thus more infor-
mation is obtained than in a simple χ2 fit with uncertainties
that are fixed from the outset.

From the χ2 function (65) the symmetric matrix

Mi j = 1

2

∂2χ2

∂pi∂p j

∣∣∣∣
pmin

(68)

can be formed at the position pmin = (pmin
1 , . . . , pmin

Npar
) of

minimum χ2. It is used to calculate the covariance

ΔAΔB =
∑

i j

∂ A

∂pi

(
M−1

)

i j

∂ B

∂p j
(69)
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of any two observables A and B [60]. Then the uncertainty
(one-σ confidence level) of an observable A can be defined
as

ΔA =
√

(ΔA)2 (70)

and the correlation coefficient is given by

cAB = ΔAΔB√
(ΔA)2 (ΔB)2

(71)

that assumes values between −1 and 1. At these limits the
two observables are fully (anti)correlated. The case cAB = 0
means that the observables are totally uncorrelated.

3.4 Selection of energy density functionals

The effect of the tensor couplings on the quality of the theoret-
ical description of nuclei is most easily seen in comparison to
conventional relativistic EDFs with density dependent cou-
plings that are obtained with the same strategy to fit the model
parameters. Hence, a variety of models is considered in this
work. The basic EDF contains only ω, σ , and ρ mesons that
couple minimally to the nucleons. This type of model con-
tains eight independent parameters that are found with the
methods as described above. Then the EDF is extended to
include also ω and ρ meson tensor couplings increasing the
number of parameters to ten. In a further step, the δ meson
is included as a new degree of freedom with one additional
parameter. The nuclear incompressibility is kept fixed in all
these EDFs at K = 240 MeV, a representative value of rel-
ativistic mean-field models [5] that is inside the range of
favoured values from the analysis of the energy of isoscalar
giant monopole resonances in nuclei, however, no unanimous
agreement has been reached so far, see, e.g., [61]. Without
using this observable directly in the fit of parameters it is
difficult to obtain reasonable values of K . For these three
types of EDFs one set with couplings depending on the vec-
tor density and one set with scalar density dependencies are
investigated bringing the total number of models to six.

4 Results

4.1 Couplings

After performing the fit of the EDFs to the properties of finite
nuclei using the approach as described in Sect. 3, the param-
eters for the best description are obtained. The numerical
values are given in Tables 1 and 2, including the mass of the
σ meson, the couplings at the reference density (vector or
scalar) and the parameters defining the density dependence
of the couplings. Ta
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Table 2 Parameters for the density dependence of couplings. The coefficients d j for j = ω, σ are given by d j = 1/
√

3c j , except for dω =
3758.39866319 in case of DDSTD

Parametrisation n(v)
ref n(s)

ref bω cω bσ cσ aρ = aδ

DDV 0.151117 0.14218170 0.03911422 0.07239939 0.21286844 0.30798197 0.35265899

DDVT 0.153623 0.14636172 0.04459850 0.06721759 0.19210314 0.27773566 0.54870200

DDVTD 0.153636 0.14637920 0.02640016 0.04233010 0.19171263 0.27376859 0.55795902

DDS 0.151186 0.14218154 0.03643847 0.08348558 0.13985555 0.23568086 0.34219700

DDST 0.153923 0.14673361 −3.786315 · 10−5 1.611143 · 10−5 0.13972293 0.20737662 0.56369799

DDSTD 0.153999 0.14683193 −7.009164 · 10−8 0.00000000 0.14036291 0.20810260 0.58325702

Some obvious correlations of individual quantities with
the type of EDF are found. The introduction of tensor cou-
plings (models DDVT, DDST) leads to reductions of the σ

meson mass and of the ω and ρ coupling strengths as com-
pared to the standard models (DDV, DDS). This feature is
related to the increased Dirac effective mass, see below. The
ratio Γσ /mσ , which is the relevant quantity for calculations
of nuclear matter, changes less strongly between the models.
The ρ meson tensor coupling is substantially larger than the
ω meson tensor coupling as observed, e.g., already in [2,27].
Also an increase of the reference densities, n(v)

ref or n(s)
ref , is

seen. The further introduction of the δ meson (DDVTD,
DDSTD) only leads to small changes of the parameters, with
the exception of the ρ meson coupling that becomes larger.
For models with scalar density dependence and tensor cou-
pling, there are two unique cases (DDST, DDSTD) where
the parameters in the function (62) become very small (cω)
or even negative (bω), see Table 2. The latter case would
cause the coupling to vanish and to become negative at very
high densities. However, this is not relevant for calculations
of nuclear structure or nuclear matter at reasonable baryon
densities since they are much lower than the zero-crossing
densities.

The actual density dependence of the couplings is depicted
in Figs. 1 and 2 for the cases of a vector or scalar density
dependence, respectively. Only the ω, σ and ρ couplings
are shown because the δ coupling has the same shape as the
ρ coupling if it is nonzero. A typical decrease of the cou-
plings with increasing density is observed. All couplings
behave rather similarly. The ρ meson coupling decreases
more strongly than the ω and σ couplings. It vanishes at
infinitely high density because the exponential form (63) was
chosen. The situation is different for the isoscalar mesons.
They approach a nonzero finite value in this limit. The vari-
ations between the parametrisations are less strong for the ρ

meson as compared to the isoscalar mesons.

4.2 Uncertainties of observables

The introduction of tensor couplings in the energy density
functional also affects the uncertainties of nuclear observ-

(a)

(b)

(c)

Fig. 1 Coupling functions of the ω (a), σ (b), and ρ (c) meson for
models with a vector density dependence

ables that enter in the calculation of the χ2 function (66).
They are given in Table 3 and shown in Fig. 3. Most strik-
ing is the reduction of the uncertainty in the binding ener-
gies (upper panel) and in the diffraction radii (lower panel)
when the tensor couplings are considered. In contrast, the
charge radii and skin thicknesses are only described slightly
worse than in the models without tensor interaction. Taking
the δ meson into account does not make a big difference.
The uncertainties of the spin-orbit splittings are almost the
same for all models. The observed trends are very similar for
models with a vector or a scalar density dependence of the
couplings. Overall, terms with tensor couplings seem to be a
valuable contribution in the EDF to improve the description
of nuclear observables.
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(a)

(b)

(c)

Fig. 2 Coupling functions of the ω (a), σ (b), and ρ (c) meson for
models with a scalar density dependence

4.3 Nuclear matter parameters

With the fitted parameters of the energy density function-
als, the characteristic parameters of nuclear matter can be
calculated easily from the dependence of the energy density
(45) on the baryon density nb and the isospin asymmetry δ.
They are given in Tables 4 and 5 with uncertainties, includ-
ing the σ meson mass and the average Dirac effective mass
m∗ = (m∗

n + m∗
p)/2 at saturation in symmetric nuclear mat-

ter.
The most notable result of including tensor couplings is

the substantial rise of the Dirac effective mass at saturation
and the drop in the mass of the σ meson. At the same time
the uncertainties of these two quantities rise in the parametri-
sations with tensor couplings. In conventional relativistic
energy density functionals without tensor couplings the Dirac
effective mass has to be rather small in order to find a rea-
sonable size of spin-orbit splittings in nuclei. The proper
binding energy per nucleon is primarily determined by the
difference V − S of the vector and scalar potentials whereas
the spin-orbit splitting depends on the gradient of the sum
V + S. Hence, in order to describe both observables rea-
sonably well, strong constraints are put on the size of V
and S themselves and thus on the couplings of the ω and σ

mesons. With tensor couplings, there is an additional contri-
bution to the spin-orbit potential. The Dirac effective mass
can be larger and the σ meson coupling smaller than usual, Ta

bl
e
3

U
nc

er
ta

in
tie

s
of

th
e

ob
se

rv
ab

le
s

us
ed

in
th

e
fit

tin
g

of
th

e
pa

ra
m

et
ri

sa
tio

ns

Pa
ra

m
et

ri
sa

tio
n

B
in

di
ng

en
er

gy
un

ce
rt

ai
nt

y
C

ha
rg

e
ra

di
us

un
ce

rt
ai

nt
y

D
if

fr
ac

tio
n

ra
di

us
un

ce
rt

ai
nt

y
Su

rf
ac

e
th

ic
kn

es
s

un
ce

rt
ai

nt
y

Sp
in

-o
rb

it
sp

lit
tin

g
un

ce
rt

ai
nt

y
Δ

O
1

(M
eV

)
Δ

O
2

(f
m

)
Δ

O
3

(f
m

)
Δ

O
4

(f
m

)
Δ

O
5

(M
eV

)

D
D

V
1.

49
55

00
0.

01
12

94
0.

03
66

62
0.

02
36

29
0.

53
56

89

D
D

V
T

0.
94

62
71

0.
01

34
11

0.
01

81
34

0.
02

63
02

0.
50

81
66

D
D

V
T

D
0.

95
15

20
0.

01
37

87
0.

01
84

55
0.

02
70

15
0.

51
64

22

D
D

S
1.

61
29

89
0.

01
13

81
0.

04
53

84
0.

02
59

96
0.

52
96

95

D
D

ST
0.

90
91

46
0.

01
37

45
0.

01
85

59
0.

02
65

18
0.

51
17

21

D
D

ST
D

0.
90

74
43

0.
01

42
15

0.
01

88
00

0.
02

74
11

0.
51

91
49

123



160 Page 12 of 20 Eur. Phys. J. A (2020) 56 :160

(a)

(b)

Fig. 3 Uncertainties ΔOi of the parametrisation in energy observables
(a) and length observables (b)

cf. Table 1. Since effects of the tensor couplings are related
to the variation of the densities, it is of no surprise that other
quantities that are sensitive to the description of the nuclear
surface are also affected. This is particular true for the mass

of the σ meson because its low mass determines the range of
the interaction.

Another effect of tensor couplings is the slight increase of
the saturation density of nuclear matter, whereas the binding
energy per nucleon is less affected as seen in Table 4. These
two quantities are rather well constrained in the fit as the
small uncertainties show. The skewness Q, however, is vary-
ing strongly between the models and is rather unconstrained,
even though large negative values are preferred.

The symmetry energy J and its slope parameter L are
also influenced by the introduction of the tensor couplings as
seen from Table 5. Both values reduce, in particular the slope
parameter, when tensor couplings are introduced. The uncer-
tainty of J is usually in the order of 7% for the DDV and DDS
models or below 4.5% for the other parametrisations. The
slope parameter L is much less constrained with uncertain-
ties around 30%. The symmetry energy incompressibilities
Ksym are always found to be negative with values correlated
to J and L . The (negative) values of Kτ,v vary over a much
larger range. In both cases the uncertainties are much larger
for parametrisations with a scalar density dependence of the
couplings.

4.4 Equation of state and symmetry energy

The nuclear matter parameters characterise the equation of
state (EoS) only close to saturation density and isospin asym-
metry zero. A larger range of baryon densities is explored in

Table 4 Nuclear matter parameters of the models at saturation related to isoscalar properties with uncertainties in brackets

Parametrisation Mass of σ meson Dirac effective mass Saturation density Binding energy per nucleon Incompressibility Skewness
mσ (MeV) m∗/mnuc nsat (fm−3) aV (MeV) K (MeV) Q (MeV)

DDV 537.6 (2.7) 0.5863 (0.0128) 0.1511 (0.0012) 16.28 (0.06) 240.0 −610.6(339.5)

DDVT 502.6 (13.8) 0.6668 (0.0265) 0.1536 (0.0014) 16.27 (0.04) 240.0 −743.3(391.2)

DDVTD 502.6 (13.6) 0.6671 (0.0265) 0.1536 (0.0014) 16.27 (0.06) 240.0 −763.4(403.8)

DDS 539.3 (2.9) 0.5840 (0.0156) 0.1512 (0.0014) 16.28 (0.06) 240.0 −389.3(348.4)

DDST 506.5 (10.3) 0.6716 (0.0238) 0.1539 (0.0013) 16.28 (0.04) 240.0 −735.7(257.2)

DDSTD 505.8 (10.6) 0.6730 (0.0246) 0.1540 (0.0013) 16.28 (0.04) 240.0 −737.6(221.3)

Table 5 Nuclear matter parameters of the models at saturation related to isovector properties with uncertainties in brackets

Parametrisation Symmetry energy Symmetry energy
slope parameter

Incompressibility of
symmetry energy

Volume part of isospin
incompressibility

J (MeV) L (MeV) Ksym (MeV) Kτ,v (MeV)

DDV 33.61 (2.17) 69.75 (21.13) −97.53 (28.62) −338.6 (93.3)

DDVT 31.58 (1.30) 42.40 (12.55) −118.91 (30.17) −241.9 (68.9)

DDVTD 31.57 (1.34) 42.58 (13.49) −116.58 (32.57) −236.6 (71.1)

DDS 33.98 (2.39) 74.58 (22.29) −48.70 (167.64) −375.2 (179.5)

DDST 31.58 (1.20) 44.13 (10.73) −85.33 (436.54) −214.8 (455.0)

DDSTD 31.52 (1.26) 43.35 (12.10) −82.97 (906.46) −209.8 (940.2)
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(a)

(b)

Fig. 4 Equation of state of symmetric nuclear matter with coupling
functions depending on the vector density (a) and on the scalar density
(b). See text for details

Figs. 4 and 5 for symmetric nuclear matter and pure neutron
matter, respectively. The results of the calculations with the
best parameters are depicted with thick lines or dots. The
uncertainty band is given by the corresponding thin lines and
small dots with the same colors. There is hardly any differ-
ence between the models for the energy per nucleon up to
nuclear saturation density. Different trends are seen at higher
densities. This is obvious because the fit of the models to
observables of nuclei is sensitive essentially only to the sub-
saturation region as higher densities are not found in finite
nuclei.

The models with a vector density dependence of the cou-
plings (upper panel of Fig. 4) behave very similarly in the
case of symmetric nuclear matter with a slight reduction of
the stiffness when tensor couplings are included in the model.
The ordering is similar in case of pure neutron matter (upper
panel of Fig. 5) but the effect of softening is a bit stronger.

The situation is different for models with a scalar density
dependence. Here, the models DDST and DDSTD are almost
identical and much softer than the other two parametrisations.
This is true for symmetric nuclear matter as well as pure
neutron matter. The EoS of model DDS is stiffer at high
densities than that of DDV, both without tensor interaction.
A similar trend is observed for models with tensor interaction.
This feature will be explained below when the evolution of
effective masses and scalar densities is studied.

(a)

(b)

Fig. 5 Equation of state of pure neutron matter with coupling functions
depending on the vector density (a) and on the scalar density (b). See
text for details

The density dependence of the nuclear symmetry calcu-
lated according to (56) is shown in Fig. 6, again for models
with vector density dependence (upper panel) and scalar den-
sity dependence (lower panel). For baryon densities below
saturation there is no big difference between the parametri-
sations as expected. At higher densities similar effects as in
symmetric nuclear matter and pure neutron matter are seen
with a strong stiffening for the models with a scalar density
dependence. At a density of nb ≈ 0.11 fm−3 all curves of
the symmetry energy cross close to a single point and the
uncertainty band is most narrow. A similar feature was seen
already for the EoS of pure neutron matter. This particular
density marks the density of highest sensitivity in nuclei that
is below the saturation density of nuclear matter. This cross-
ing of EoS was already observed very early on for Skyrme
models [62].

Taking the δ meson into account in the parametrisations
has almost no effect on the EoS of symmetric or pure nucleon
matter and the density dependence of the symmetry energy.

4.5 Dirac effective masses and scalar densities

The Dirac effective masses m∗
nuc of the nucleons in sym-

metric nuclear matter and pure neutron matter are depicted
in Figs. 7 and 8, respectively. They decrease with increasing
baryon density due to the increase of the scalar potential. The
effective masses in pure neutron matter are generally lower
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(a)

(b)

Fig. 6 Symmetry energy as a function of the baryon density with cou-
pling functions depending on the vector density (a) and on the scalar
density (b). See text for details

than those in symmetric nuclear matter. The models DDVT,
DDVTD, DDST, and DDSTD show a larger effective mass
than the DDV and DDS models, respectively, throughout the
covered range of baryon densities in the figures. The scalar
potential S has to be less strong to obtain the spin-orbit split-
ting in nuclei because the tensor couplings give an additional
contribution.

The models with scalar density dependence of the cou-
plings exhibit the peculiar feature that the Dirac effective
mass vanishes at some density above saturation. At that
point the scalar potential Si of a nucleon i reaches the
vacuum nucleon mass mi . This can happen only because
the rearrangement contribution from the ω meson coupling
in (15) increases without bounds for a negative derivative
dΓ ω/dn(s) of the ω coupling function. The effect is more
pronounced for pure neutron matter than for symmetric
nuclear matter with lower collapse densities.

The behaviour of the Dirac effective masses is correlated
with vanishing scalar densities at a certain baryon density
above saturation, as depicted in Figs. 9 and 10. In the case
of models with couplings that depend on the vector density,
there is a smooth and continuous rise of the scalar densities
with decreasing slope (upper panels). In contrast, the scalar
density in the models with scalar density dependent couplings
first rise and then decline reaching zero eventually (lower
panels).

(a)

(b)

Fig. 7 Dirac effective mass in symmetric nuclear matter as a function
of the baryon density with coupling functions depending on the vector
density (a) and on the scalar density (b)

(a)

(b)

Fig. 8 Dirac effective mass in pure neutron matter as a function of the
baryon density with coupling functions depending on the vector density
(a) and on the scalar density (b)

The decrease of the effective masses and scalar densities
at high densities for the models with a scalar density depen-
dence of the couplings modifies the kinetic contributions (48)
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(a)

(b)

Fig. 9 Scalar density in symmetric nuclear matter as a function of the
baryon density with coupling functions depending on the vector density
(a) and on the scalar density (b)

(a)

(b)

Fig. 10 Scalar density in pure neutron matter as a function of the
baryon density with coupling functions depending on the vector density
(a) and on the scalar density (b)

to the pressure of the system. In other models, the decline of
m∗

i with baryon density is partly compensated by a rise of

n(s)
i . In contrast, the product m∗

i n(s)
i in models with couplings

of scalar density dependence reduces much faster at higher
baryon densities and a stiffer EoS is expected as confirmed
in Figs. 4 and 5.

5 Conclusions

The construction of energy density functionals resulting from
relativistic mean-field models leaves ample room for varia-
tions. In this work two main aspects of the form of the EDF
were studied in more detail: the dependence of the mini-
mal nucleon–meson couplings on the total Lorentz vector or
scalar density of the system and the effects of tensor cou-
plings of the isovector mesons with the nucleons. Further-
more, the effect of including the δ meson in addition to the
standard isovector ρ meson is explored.

Since relativistic EDFs are phenomenological descrip-
tions of finite nuclei and nuclear matter depending on a
certain number of parameters, these quantities, which deter-
mine the effective in-medium interaction, cannot be related
directly to the free nucleon–nucleon interaction that is well
constrained by scattering data. Instead, the model parameters
have to be found by a fit to nuclear observables. Contrary to
most earlier approaches, a self-consistent determination of
the uncertainties in the χ2 function was realized in this work
leading to more realistic values than from heuristic estimates.

The main results of this work can be summarized as fol-
lows. The inclusion of tensor couplings in the relativistic EDF
reduces the strength of the isoscalar minimal nucleon-meson
couplings as compared to models without tensor couplings.
For all mesons a reduction of the couplings with increas-
ing baryon density is found in all cases. The description of
finite nuclei improves with tensor couplings, in particular for
the binding energies and diffraction radii. The equation of
state of nuclear matter is very similar for all models at sub-
saturation densities. The characteristic nuclear matter param-
eters at saturation and the parameters of the EDFs exhibit
some correlation with the choice of the density dependence
of the couplings and the inclusion of the tensor couplings or
not. Saturation densities, binding energies at saturation, sym-
metry energies and slope parameters of the models are rather
well constrained. Higher-order derivatives show much larger
uncertainties. At high densities large variations of the predic-
tions of the EoS are observed with a substantial increase of the
model uncertainties. The lowest uncertainties are found close
to a density of about 0.11 fm−3 where all EoSs cross close
to a single point. Models with a scalar density dependence
are stiffer at high densities than models with a vector density
dependence of the couplings. This observation is related to
the collapse of the total scalar density of the system and van-
ishing effective mass at high baryon densities in approaches
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with couplings depending on scalar densities. The rearrange-
ment contribution from the dependence of the ω coupling on
the scalar density leads to an unlimited increase of the scalar
potential in this case. Models with tensor couplings have
larger effective nucleon masses than models without. This is
possible because the tensor contributions increase the spin-
orbit splitting so that a smaller strength of the Lorentz scalar
σ meson is needed to fit the nuclear data.

In order to avoid the problems with the scalar density
dependence of all couplings, a change to a mixed density
dependence can be considered, i.e. a dependence of Lorentz
vector meson couplings on the vector density and Lorentz
scalar meson couplings on the scalar density. Models of this
type have been explored in [38] but without tensor couplings
and without a self-consistent determination of the uncertain-
ties of the fitted observables. Work in this direction is in
progress using an extended set of nuclei and more observ-
ables in the fitting procedure.

Another aspect is also worthwhile to be investigated fur-
ther. In the present approach, the incompressibility of nuclear
matter was kept to a fixed value because a fit to only ground
state properties of finite nuclei does not help to fix this quan-
tity very well. Properties of excited states like giant reso-
nances, in particular the isoscalar giant monopole resonance,
have to be included in the fitting procedure and can help much
better to find proper values of K , see, e.g., [63]. The study of
other types of giant resonances that constrain the isovector
part of the effective interaction will also be useful.

In general, a better description of surface properties of
finite nuclei will be very rewarding by considering appro-
priately chosen new terms in the EDF. It is known that the
incompressibility of nuclear matter is closely related to the
surface thickness and surface tension as expressed by the so-
called pocket formula [64,65]. More precise experimental
data on the neutron skin thickness would help to determine
the isovector parts of the EDF more precisely.
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Appendix A

The rearrangement contributions (15) and (16) to the vector
and scalar potentials (13) and (14), respectively, arise from
the density dependence of the couplings Γ̃ j in the covariant
derivative (3) and the effective mass operator (4) when the
field equation of the nucleons is deduced with the help of the
Euler–Langrange equation

0 = ∂L
∂Ψ ik

− ∂ν

∂L
∂(∂νΨ ik)

(72)

with the Lagrangian density (1). Here the indices i and k
are used with i distinguishing between protons and neutrons
and k to identify a particular single-particle state. Hence the
nucleonic contribution to L reads

Lnucleonx =
∑

i=p,n

∑

k

wikΨ ik
(
γμi Dμ

ik − σμν T μν
ik − M∗

ik
)
Ψik (73)

if the occupation factors wik = 0 or 1 are introduced similar
as in the definitions (9) and (10) of the current and scalar
density. Since L does not depend on derivatives of Ψ ik only
the first term in (72) remains. The result

0 = wik
(
γμi Dμ

ik − σμν T μν
ik − M∗

ik
)
Ψik

−
∑

i ′=p,n

∑

k′
wi ′k′Ψ i ′k′γμ

(
∂Γ̃ω

∂Ψ ik
ωμ + ∂Γ̃�

∂Ψ ik
�μ · τ

)
Ψi ′k′

+
∑

i ′=p,n

∑

k′
wi ′k′Ψ i ′k′

(
∂Γ̃σ

∂Ψ ik
σ + ∂Γ̃δ

∂Ψ ik
δ · τ

)
Ψi ′k′ (74)

contains in the first line the usual form of the Dirac equation
for nucleon ik. The dependence of the couplings Γ̃ j on the
nucleon fields leads to the contributions in the second and
third line. Assuming a dependence on the vector density ρv

or the scalar density ρs , the expression

∂Γ̃ j

∂Ψ ik
= ∂Γ̃ j

∂ρv

∂ρv

∂Ψ ik
+ ∂Γ̃ j

∂ρs

∂ρs

∂Ψ ik

= ∂Γ̃ j

∂ρv

jμ

ρv

γμwikΨik + ∂Γ̃ j

∂ρs
wikΨik (75)

is found with Eqs. (9) and (10). Then Eq. (74) becomes

0 = γμ

(
i∂μ − Γ̃ωωμ − Γ̃ρρμ · τ − Γγ Aμ 1 + τ3

2

)
Ψik

−
(

mi − Γ̃σ σ − Γ̃δδ · τ
)

Ψik

−
(

∂Γ̃ω

∂ρv

jμ

ρv

γμ + ∂Γ̃ω

∂ρs

)
Ψikω

ν
∑

i ′=p,n

∑

k′
Ψ i ′k′γνΨi ′k′
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−
(

∂Γ̃ρ

∂ρv

jμ

ρv

γμ + ∂Γ̃ρ

∂ρs

)
Ψik�

ν ·
∑

i ′=p,n

∑

k′
Ψ i ′k′γντΨi ′k′

+
(

∂Γ̃σ

∂ρv

jμ

ρv

γμ + ∂Γ̃σ

∂ρs

)
Ψikσ

∑

i ′=p,n

∑

k′
Ψ i ′k′Ψi ′k′

+
(

∂Γ̃δ

∂ρv

jμ

ρv

γμ + ∂Γ̃δ

∂ρs

)
Ψikδ ·

∑

i ′=p,n

∑

k′
Ψ i ′k′τΨi ′k′

−σμνT μν
i Ψik (76)

where the source currents and densities

jωμ =
∑

i ′=p,n

∑

k′
wi ′k′Ψ i ′k′γμΨi ′k′ (77)

jρμ =
∑

i ′=p,n

∑

k′
wi ′k′Ψ i ′k′γμτΨi ′k′ (78)

�σ =
∑

i ′=p,n

∑

k′
wi ′k′Ψ i ′k′Ψi ′k′ (79)

�δ =
∑

i ′=p,n

∑

k′
wi ′k′Ψ i ′k′τΨi ′k′ (80)

are easily identified. Reordering the contributions gives

0 = [
γμ

(
i∂μ − Σμ

) − σμνT μν
i − (mi − Σ)

]
Ψik (81)

with the explicit forms of the scalar self-energy

Σ = Γ̃σ σ + ∂Γ̃σ

∂ρs
σ�σ + Γ̃δδ · τ + ∂Γ̃δ

∂ρs
δ · �δ

−∂Γ̃ω

∂ρs
ων jων − ∂Γ̃ρ

∂ρs
�ν · jρν (82)

and the vector self-energy

Σμ = Γ̃ωωμ + ∂Γ̃ω

∂ρv

jμ

ρv

ων jων + Γ̃ρρμ · τ + ∂Γ̃ρ

∂ρv

jμ

ρv

−∂Γ̃σ

∂ρv

jμ

ρv

σ�σ − ∂Γ̃δ

∂ρv

jμ

ρv

δ · �δ + Γγ Aμ 1 + τ3

2
.

(83)

In the mean-field approximation and under the symmetries of
the application to spherical nuclei, the currents and densities
(77), (78), (79), and (80) reduce to the forms (34) and (35)
with the appropriate coupling factors gi j . Similarly, the self-
energies (82) and (83) become simple potentials (13) and
(14) where only the μ = 0 component of Σμ and j0 = ρv

remain. The rearrangement contributions (15) and (16) are
easily recognized when the functionals Γ̃ j of the fields are
replaced by functions Γ j of the densities.

Appendix B

The energy density functional (45) contains in total 19 param-
eters: the masses of nucleons and mesons (six), the reference

density (one) and the nucleon-meson couplings at this density
(four), the parameters describing the density dependence of
the couplings (six), and the tensor couplings (two). However,
really used are only 14 because the masses of the nucleons
and mesons, except for the σ meson, are kept constant. Thus
there are eight parameters for the isoscalar part of the effec-
tive interaction and six for the isovector part.

In the actual fitting procedure six of the eight isoscalar
parameters are replaced by four characteristic parameters
of symmetric nuclear matter and two auxiliary quantities.
The mass of the sigma meson mσ and the ω tensor coupling
ΓT ω are used directly as independent quantities. The four
nuclear matter parameters are the saturation density nsat, the
Dirac effective mass m∗

sat at saturation, the binding energy per
nucleon at saturation Bsat and the incompressibility K . The
two auxiliary quantities are the derivative f ′

ω(1) and the ratio
r = f ′′

ω (1)/ f ′
ω(1) of derivatives. The transformation pro-

ceeds in two steps. First, the nuclear matter parameters are
converted to the coupling factors C j = Γ 2

j /m2
j for j = ω, σ ,

their first derivatives D(v)
j or D(s)

j and second derivatives E (v)
j

or E (s)
j as defined in Sect. 2.3. Then these quantities are used

to calculate the parameters a j , b j , c j , and d j of the rational
function (62).

In the parameter conversion, the average nucleon mass
mnuc = (m p + mn)/2 is used and the real nuclear matter
parameters are calculated numerically at the end of the fitting
procedure with the correct nucleon masses to be independent
of this averaging.

The saturation density nsat defines the Fermi momentum

p∗
sat =

(
3π2

2
nsat

) 1
3

(84)

in symmetric nuclear matter. With the Dirac effective mass
m∗

sat the effective chemical potential

μ∗
sat =

√
(p∗

sat)
2 + (m∗

sat)
2 (85)

and the corresponding scalar density

n(s)
sat = m∗

sat

π2

[
p∗

satμ
∗
sat − (

m∗
sat

)2 ln
p∗

sat + μ∗
sat

m∗
sat

]
(86)

at saturation are given. The saturation density nsat or the
scalar density at saturation n(s)

sat are used as the reference
density nref in the coupling functions if a vector or scalar
density dependence is selected, respectively. Then the scalar
and vector potential at saturation are found as

Ssat = mnuc − m∗
sat (87)

and

Vsat = mnuc − Bsat − μ∗
sat (88)
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with the binding energy per nucleon Bsat. Furthermore the
factor (54) at saturation

fsat = 3

(
n(s)

sat

m∗
sat

− nsat

μ∗
sat

)
(89)

is defined for later convenience. For the next step one has to
distinguish the type of density dependence.

In case of a vector density dependence with nref = n(v)
sat

there is no rearrangement contribution to the scalar potential,
S(R)

sat = 0, and the σ coupling

Cσ (nref) = Γ 2
σ (nref)

m2
σ

= Ssat

n(s)
sat

(90)

and thus Γσ (nref) for given mσ are immediately obtained.
The vector coupling is found with (45) to be

Cω(nref) = Γ 2
ω (nref)

m2
ω

= 2

n2
sat

[
(mnuc − Bsat) nsat − 1

2
Cσ

(
n(s)

sat

)2

−1

4

(
3μ∗

satnsat + m∗
satn

∗
sat

)]
(91)

in symmetric nuclear matter. Then the rearrangement contri-
bution to Vsat is

V (R)
sat = Vsat − Cω

(
n(v)

sat

)2
(92)

and the derivatives

D(v)
ω (nref) = 2 f ′

ω(1)
Cω

n(v)
sat

(93)

and

D(v)
σ (nref) = D(v)

ω (nref)
2 − 2V (R)

sat(
n(s)

sat

)2 (94)

are determined with the auxiliary quantity f ′
ω(1). Defining

E (v)
ω (nref) = 2Cω

(n(v)
sat )

2
f ′
ω(1)

[
f ′
ω(1) + r

]
(95)

and

g(v)
sat =

m∗
sat

μ∗
sat

− fsat D(v)
σ n(s)

sat

1 + fsatCσ

(96)

the second derivative

E (v)
σ (nref)

=
[
3
(
μ∗

sat − m∗
satg

(v)
sat

)
− K

+9Cωn(v)
sat + 18D(v)

ω (n(v)
sat )

2 + 9

2
E (v)

ω (n(v)
sat )

3

−9D(v)
σ

(
n(s)

sat

)2 − 9
(

Cσ + D(v)
σ n(v)

sat

)
n(s)

sat g
(v)
sat

]

[
9

2
n(v)

sat

(
n(s)

sat

)2
]−1

(97)

is found from the incompressibility K using (50) and (53).
The calculation proceeds slightly differently in case of

couplings that depend of the scalar density. It is more compli-
cated because both expressions (50) and (53) depend explic-
itly on the second derivatives of the couplings. Since the
rearrangement contribution V (R)

sat is zero, the ω coupling

Cω(nref) = Γ 2
ω (nref)

m2
ω

= Vsat

n(v)
sat

(98)

is directly found as well as the derivatives

D(v)
ω (nref) = 2 f ′

ω(1)
Cω

nref
(99)

and

E (v)
ω (nref) = 2Cω

n2
ref

f ′
ω(1)

[
f ′
ω(1) + r

]
(100)

where the reference density nref is now identical to the scalar
density n(s)

sat . The rearrangement contribution to the scalar
potential is

S(R)
sat = 1

n(s)
sat

(
1

2
μ∗

satn
(v)
sat − 1

2
m∗

satn
(s)
sat

+Vsatn
(v)
sat − Ssatn

(s)
sat

)
(101)

because the pressure (47) is zero at the saturation density. If
one defines the auxiliary quantity

Xsat = Ysat

Zsat
(102)

as the ratio of

Ysat =
(

m∗
sat

μ∗
sat

+ fsat D(s)
ω n(v)

sat

)

(
Cσ n(s)

sat + 2D(s)
σ (n(s)

sat )
2 − D(s)

ω (n(v)
sat )

2 + m∗
sat

3

)

−
[
1 + fsat

(
Cσ + 2D(s)

σ n(s)
sat

)]

[
μ∗

sat

3
− K

9
+

(
Cω + D(s)

ω n(s)
sat

)
n(v)

sat

]
(103)

and

Zsat = fsat

(
μ∗

sat

3
− K

9
+ Cωn(v)

sat

)
− n(s)

sat
m∗

sat

μ∗
sat

(104)

then the second derivative E (s)
σ (nref) is easily obtained from

E (s)
σ = 1

(n(s)
sat )

2

[
2Xsat + E (s)

ω (n(v)
sat )

2
]

. (105)

In the next step of the parameter conversion, the couplings
Cσ and their derivatives are used to define the function deriva-
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tives

f ′
σ (1) = D(x)

σ n(x)
sat

2Cσ

(106)

and

f ′′
σ (1) = E (x)

σ (n(x)
sat )

2

2Cσ

− [
f ′
σ (1)

]2 (107)

where x = v or s depending on the type of density depen-
dence. The corresponding values f ′

ω(1) and f ′′
ω (1) are already

known because they were used as original parameters in the
fit.

Finally the quantities f ′
j (1) and f ′′

j (1) for j = ω and σ are
used to determine the actual parameters of the rational func-
tion (62). For this purpose, the first and second derivatives of
the function (62) are needed. They are given by

f ′
j (x) = 2a j (b j − c j )

(x + d j )
[
1 + c j (x + d j )2

]2 (108)

and

f ′′
j (x) = 2a j (b j − c j )

1 − 3c j (x + d j )
2

[
1 + c j (x + d j )2

]3 (109)

where the condition f ′′
j (0) = 0 leads to the condition c j =

1/(3d2
j ). With the known ratio

R21(d j ) = f ′′
j (1)

f ′
j (1)

= 1 − 3c j (1 + d j )
2

[
1 + c j (1 + d j )2

]
(1 + d j )

= −1 − 2d j[
d2

j + 1
3 (1 + d j )2

]
(1 + d j )

(110)

an equation to determine d j is obtained. The function R21(d j )

is negative for d j > −1/2. A unique solution with positive d j

is possible for −3 ≤ R21 < 0. Only this branch is considered
in the present parameter fits. With the known d j and then c j ,
the parameter b j is found from the ratio

R10(d j ) = f ′
j (1)

f j (1)

= 2(b j − c j )(1 + d j )

[1 + c j (1 + d j )2][1 + b j (1 + d j )2] (111)

as

b j = R10 + c j S

S − R10(1 + d j )2 (112)

with the auxiliary quantity

S = 2(1 + d j )

1 + c j (1 + d j )2 . (113)

Finally, the parameter a j is found from the normalisation
condition f j (1) = 1 as

a j = 1 + c j (1 + d j )
2

1 + b j (1 + d j )2 . (114)
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