Skip to main content
Log in

Investigation of relativistic symmetry from different fields with the similarity renormalization group

  • Regular Article –Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

Influences from different fields of mesons and photons on the relativistic symmetry are reinvestigated with the similarity renormalization group method (SRG). The energy splittings of pseudospin doublet and spin doublet are extracted from the SRG calculations. From the point view of the SRG method, \(\omega \) field is revealed to exert great effect on the pseudsospin symmetry by nonrelativistic term, dynamical effect and spin–orbit interaction. Both nonrelativistic term and dynamical effect are also dominant in the influence of the \(\sigma \) field on the pseudsospin symmetry. With the increasing strength of the photon field, the evolution of nonrelativistic component provides the main contribution to the increase of the total pseudospin energy splitting. The nonrelativistic term play the major role in influencing the isospin asymmetry in the pseudospin symmetry. As for the \(\rho \) meson field, all three terms exert contrary influences on the pseudospin splitting between neutron doublet and proton doublet. The spin symmetry which is quasi-isospin symmetric is revealed to be due to the relativistic effect by spin–orbit term.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: All data generated during this study are contained in this published article.]

References

  1. O. Haxel, J.H.D. Jensen, H.E. Suess, Phys. Rev. 75, 1766 (1949)

    Article  ADS  Google Scholar 

  2. M. Goeppert-Mayer, Phys. Rev. 75, 1969 (1949)

    Article  ADS  Google Scholar 

  3. K.T. Hecht, A. Adler, Nucl. Phys. A 137, 129 (1969)

    Article  ADS  Google Scholar 

  4. A. Arima, M. Harvey, K. Shimizu, Phys. Lett. B 30, 517 (1969)

    Article  ADS  Google Scholar 

  5. A. Bohr, I. Hamamoto, B.R. Mottelson, Phys. Scr. 26, 267 (1982)

    Article  ADS  Google Scholar 

  6. J. Dudek, W. Nazarewicz, Z. Szymanski, G.A. Leander, Phys. Rev. Lett. 59, 1405 (1987)

    Article  ADS  Google Scholar 

  7. W. Nazarewicz, P.J. Twin, P. Fallon, J.D. Garrett, Phys. Rev. Lett. 64, 1654 (1990)

    Article  ADS  Google Scholar 

  8. D. Troltenier, W. Nazarewicz, Z. Szymanski, J.P. Draayer, Nucl. Phys. A 567, 591 (1994)

    Article  ADS  Google Scholar 

  9. J.N. Ginocchio, Phys. Rev. Lett. 78, 436 (1997)

    Article  ADS  Google Scholar 

  10. J.N. Ginocchio, Phys. Rep. 315, 231 (1999)

    Article  ADS  Google Scholar 

  11. J. Meng, K. Sugawara-Tanabe, S. Yamaji, P. Ring, A. Arima, Phys. Rev. C 58, R628 (1998)

    Article  ADS  Google Scholar 

  12. J. Meng, K. Sugawara-Tanabe, S. Yamaji, A. Arima, Phys. Rev. C 59, 154 (1999)

    Article  ADS  Google Scholar 

  13. P. Alberto, M. Fiolhais, M. Malheiro, A. Delfino, M. Chiapparini, Phys. Rev. Lett. 86, 5015 (2001)

    Article  ADS  Google Scholar 

  14. P. Alberto, M. Fiolhais, M. Malheiro, A. Delfino, M. Chiapparini, Phys. Rev. C 65, 034307 (2002)

    Article  ADS  Google Scholar 

  15. J.Y. Guo, R.D. Wang, X.Z. Fang, Phys. Rev. C 72, 054319 (2005)

    Article  ADS  Google Scholar 

  16. Q. Xu, Eur. Phys. J. A 55, 54 (2019)

    Article  ADS  Google Scholar 

  17. S. Marcos, L.N. Savushkin, M. López-Quelle, Phys. Rev. C 62, 054309 (2000)

    Article  ADS  Google Scholar 

  18. S. Marcos, M. López-Quelle, R. Niembro, Phys. Lett. B 513, 30 (2001)

    Article  ADS  Google Scholar 

  19. R. Lisboa, M. Malheiro, P. Alberto, Phys. Rev. C 67, 054305 (2003)

    Article  ADS  Google Scholar 

  20. Q. Xu, Eur. Phys. J. A 51, 81 (2015)

    Article  ADS  Google Scholar 

  21. J.Y. Guo, Phys. Rev. C 85, 021302(R) (2012)

    Article  ADS  Google Scholar 

  22. J.Y. Guo, S.W. Chen, Z.M. Niu, D.P. Li, Q. Liu, Phys. Rev. Lett. 112, 062502 (2014)

    Article  ADS  Google Scholar 

  23. Y.X. Guo, H.Z. Liang, Phys. Rev. C 99, 054324 (2019)

    Article  ADS  Google Scholar 

  24. J.Y. Guo, X.Z. Fang, Eur. Phys. J. A 45, 179 (2010)

    Article  ADS  Google Scholar 

  25. J.N. Ginocchio, Phys. Rep. 414, 165 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  26. H.Z. Liang, J. Meng, S.G. Zhou, Phys. Rep. 570, 1 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  27. Y.X. Guo, H.Z. Liang, Chin. Phys. C 43, 114105 (2019)

    Article  ADS  Google Scholar 

  28. J. Meng, J.Y. Guo, J. Li et al., Prog. Phys. 31, 199 (2011)

    Google Scholar 

  29. D.P. Li, S.W. Chen, J.Y. Guo, Phys. Rev. C 87, 044311 (2013)

    Article  ADS  Google Scholar 

  30. M. Chiapparini, A. Delfino, M. Malheiro, A. Gattone, Z. Phys. A 357, 47 (1997)

    Article  ADS  Google Scholar 

  31. W.H. Long, J. Meng, S.G. Zhou et al., Phys. Rev. C 69, 034319 (2004)

    Article  ADS  Google Scholar 

  32. J. Meng, I. Tanihata, Nucl. Phys. A 650, 176 (1999)

    Article  ADS  Google Scholar 

  33. R.J. Furnstahl, B.D. Serot, H.B. Tang, Nucl. Phys. A 615, 441 (1997)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was partly supported by the National Natural Science Foundation of China under Grant No. 11205112 and the Qualified Personnel Foundation of Taiyuan University of Technology (No. 800101-02030017).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiang Xu.

Additional information

Communicated by Vittorio Somà

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Q., Luo, LF. Investigation of relativistic symmetry from different fields with the similarity renormalization group. Eur. Phys. J. A 56, 129 (2020). https://doi.org/10.1140/epja/s10050-020-00159-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-020-00159-z

Navigation