Skip to main content
Log in

Quantum phase transitions and spectral statistical properties in nuclei near \(N \sim 90\)

  • Regular Article – Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

The phase transitions and spectral statistical properties in Nd, Sm, Gd, and Dy isotopes are investigated by spherical mean-field plus standard pairing model. The results of the model calculations successfully reproduce the critical phenomena observed experimentally in the two-neutron separation energy, odd–even mass differences, \(\alpha \)-decay, double \(\beta ^{-}\)-decay energy and the first pairing excitation states of these isotopes with the critical point at the neutron number \(N\sim 90\). As the only parameter in the model, the pairing interaction strength G is determined by fitting the binding energies, the odd–even mass differences and the energies of the first and second pairing excitation states for the \(^{144-157}\)Nd, \(^{146-159}\)Sm, \(^{148-161}\)Gd, and \(^{150-163}\)Dy isotopes. The spectral statistical properties of the excited levels of Sm isotopes show that the quantum chaos exists in \(^{151-153}\)Sm which corresponds to the critical point at \(N\sim 90\). It is inferred that the transitional region is the most sensitive region to perturbation, leading generically to the typical signature of quantum chaos. Moreover, the results indicate that this critical behavior is related not only to the ground-state but also to the excited-state under the present model. It may provide us a microscopic picture that the ground-state phase transition and the quantum chaos behaviors may drive by the competition between the spherical mean-field and the pairing interaction based on the present model for Nd, Sm, Gd, and Dy isotopes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: All the data in the paper is available to be deposited.]

References

  1. E.P. Wigner, Ann. Math. 53, 36 (1951)

    Article  MathSciNet  Google Scholar 

  2. E.P. Wigner, Ann. Math. 62, 548 (1955)

    Article  MathSciNet  Google Scholar 

  3. E.P. Wigner, Ann. Math. 65, 203 (1957)

    Article  MathSciNet  Google Scholar 

  4. E.P. Wigner, Ann. Math. 67, 325 (1958)

    Article  MathSciNet  Google Scholar 

  5. T.A. Brody, J. Flores, J.B. French, P.A. Mello, A. Pandey, S.S.M. Wong, Rev. Mod. Phys. 53, 385 (1981)

    Article  ADS  Google Scholar 

  6. T. Guhr, A. Müller-Groeling, H.A. Weidenmüller, Phys. Rep. 299, 189 (1998). https://doi.org/10.1016/S0370-1573(97)00088-4

    Article  ADS  MathSciNet  Google Scholar 

  7. H.A. Weidenmüller, G.E. Mitchell, Rev. Mod. Phys. 81, 539 (2009). https://doi.org/10.1103/RevModPhys.81.539

    Article  ADS  Google Scholar 

  8. O. Bohigas, M.J. Giannoni, C. Schmit, Phys. Rev. Lett. 52, 1 (1984). https://doi.org/10.1103/PhysRevLett.52.1

    Article  ADS  MathSciNet  Google Scholar 

  9. R.U. Haq, A. Pandey, O. Bohigas, Phys. Rev. Lett. 48, 1086 (1982). https://doi.org/10.1103/PhysRevLett.48.1086

    Article  ADS  Google Scholar 

  10. M. Macek, P. Stránský, P. Cejnar, S. Heinze, J. Jolie, J. Dobeš, Phys. Rev. C 75, 064318 (2007). https://doi.org/10.1103/PhysRevC.75.064318

    Article  ADS  Google Scholar 

  11. T.H. Seligman, J.J.M. Verbaarschot, M.R. Zirnbauer, Phys. Rev. Lett. 53, 215 (1984). https://doi.org/10.1103/PhysRevLett.53.215

    Article  ADS  Google Scholar 

  12. D.C. Meredith, S.E. Koonin, M.R. Zirnbauer, Phys. Rev. A 37, 3499 (1988). https://doi.org/10.1103/PhysRevA.37.3499

    Article  ADS  Google Scholar 

  13. W.M. Zhang, C.C. Martens, D.H. Feng, J.M. Yuan, Phys. Rev. Lett. 61, 2167 (1988). https://doi.org/10.1103/PhysRevLett.61.2167

    Article  ADS  MathSciNet  Google Scholar 

  14. Y. Alhassid, A. Novoselsky, N. Whelan, Phys. Rev. Lett. 65, 2971 (1990). https://doi.org/10.1103/PhysRevLett.65.2971

    Article  ADS  Google Scholar 

  15. Y. Alhassid, N. Whelan, Phys. Rev. Lett. 67, 816 (1991). https://doi.org/10.1103/PhysRevLett.67.816

    Article  ADS  Google Scholar 

  16. Y. Alhassid, N. Whelan, Phys. Rev. C 43, 2637 (1991). https://doi.org/10.1103/PhysRevC.43.2637

    Article  ADS  Google Scholar 

  17. Y. Alhassid, A. Novoselsky, Phys. Rev. C 45, 1677 (1992). https://doi.org/10.1103/PhysRevC.45.1677

    Article  ADS  Google Scholar 

  18. Y. Alhassid, D. Vretenar, Phys. Rev. C 46, 1334 (1992). https://doi.org/10.1103/PhysRevC.46.1334

    Article  ADS  Google Scholar 

  19. N. Whelan, Y. Alhassid, Nucl. Phys. A 556, 42 (1993). https://doi.org/10.1016/0375-9474(93)90237-R

    Article  ADS  Google Scholar 

  20. P. Cejnar, J. Jolie, Phys. Rev. E 58, 387 (1998). https://doi.org/10.1103/PhysRevE.58.387

    Article  ADS  Google Scholar 

  21. N. Whelan, Y. Alhassid, A. Leviatan, Phys. Rev. Lett. 71, 2208 (1993). https://doi.org/10.1103/PhysRevLett.71.2208

    Article  ADS  Google Scholar 

  22. D.M. Leitner, H. Köppel, L.S. Cederbaum, Phys. Rev. Lett. 73, 2970 (1994). https://doi.org/10.1103/PhysRevLett.73.2970

    Article  ADS  Google Scholar 

  23. A. Leviatan, N.D. Whelan, Phys. Rev. Lett. 77, 5202 (1996). https://doi.org/10.1103/PhysRevLett.77.5202

    Article  ADS  Google Scholar 

  24. D. Kusnezov, Phys. Rev. Lett. 79, 537 (1997). https://doi.org/10.1103/PhysRevLett.79.537

    Article  ADS  Google Scholar 

  25. J.Z. Gu, X.Z. Wu, Y.Z. Zhuo, E.G. Zhao, Nucl. Phys. A 625, 621 (1997). https://doi.org/10.1016/S0375-9474(97)00503-4

    Article  ADS  Google Scholar 

  26. F.Q. Chen, X.R. Zhou, J.Z. Gu, Chin. Phys. Lett. 27, 3 (2010). https://doi.org/10.1088/0256-307X/27/3/030503

    Article  Google Scholar 

  27. W.D. Heiss, A.L. Sannino, Phys. Rev. A 43, 4159 (1991). https://doi.org/10.1103/PhysRevA.43.4159

    Article  ADS  Google Scholar 

  28. W.D. Heiss, M. Müller, Phys. Rev. E 66, 016217 (2002). https://doi.org/10.1103/PhysRevE.66.016217

    Article  ADS  MathSciNet  Google Scholar 

  29. W.D. Heiss, R.G. Nazmitdinov, S. Radu, Phys. Rev. Lett. 72, 2351 (1994). https://doi.org/10.1103/PhysRevLett.72.2351

    Article  ADS  Google Scholar 

  30. X. Guan, K.D. Launey, J.Z. Gu, F. Pan, J.P. Draayer, Phys. Rev. C 88, 044325 (2013)

    Article  ADS  Google Scholar 

  31. X. Guan, H.C. Xu, F. Pan, J.P. Draayer, Phys. Rev. C 94, 024309 (2016)

    Article  ADS  Google Scholar 

  32. X. Guan, H.C. Zhao, F. Pan, J.P. Draayer, Nucl. Phys. A 986, 86 (2019)

    Article  ADS  Google Scholar 

  33. R.W. Richardson, Phys. Lett. 3, 277 (1963)

    Article  ADS  Google Scholar 

  34. R.W. Richardson, Phys. Lett. 5, 82 (1963)

    Article  ADS  Google Scholar 

  35. R.W. Richardson, N. Sherman, Nucl. Phys. 52, 221 (1964)

    Article  Google Scholar 

  36. R.W. Richardson, N. Sherman, Nucl. Phys. 52, 253 (1964)

    Article  Google Scholar 

  37. R.W. Richardson, N. Sherman, Nucl. Phys. M. Gaudin, J. Phys. 37, 1087 (1976)

  38. X. Guan, K.D. Launey, M.X. Xie, L. Bao, F. Pan, J.P. Draayer, Phys. Rev. C 86, 024313 (2012)

    Article  ADS  Google Scholar 

  39. X. Guan, K.D. Launey, M.X. Xie, L. Bao, F. Pan, J.P. Draayer, Comput. Phys. Commun. 185, 2714 (2014)

    Article  ADS  Google Scholar 

  40. C. Qi, T. Chen, Phys. Rev. C 92, 051304(R) (2015)

    Article  ADS  Google Scholar 

  41. G. Szegö, Amer. Math. Soc. Colloq. Publ., vol. 23 (American Mathematical Society, Providence, 1975)

  42. F.J. Dyson, J. Math. Phys. 3, 140 (1962). https://doi.org/10.1063/1.1703773

    Article  ADS  Google Scholar 

  43. F.J. Dyson, J. Math. Phys. 3, 157 (1962). https://doi.org/10.1063/1.1703774

    Article  ADS  Google Scholar 

  44. F.J. Dyson, J. Math. Phys. 3, 166 (1962). https://doi.org/10.1063/1.1703775

    Article  ADS  Google Scholar 

  45. F.J. Dyson, J. Math. Phys. 3, 1191 (1962). https://doi.org/10.1063/1.1703862

    Article  ADS  Google Scholar 

  46. F.J. Dyson, J. Math. Phys. 3, 1199 (1962). https://doi.org/10.1063/1.1703863

    Article  ADS  Google Scholar 

  47. M.L. Metha, Random Matrices, 2nd edn. (Academic Press, Boston, 1991)

    Google Scholar 

  48. G. Audi, A.H. Wapstra, C. Thibault, Nucl. Phys. A 729, 337 (2003)

    Article  ADS  Google Scholar 

  49. J.A. Cameron, B. Singh, Nucl. Data Sheets 94, 429 (2001)

    Article  ADS  Google Scholar 

  50. Z.Y. Wu, C. Qi, R. Wyss, H.L. Liu, Phys. Rev. C 92, 024306 (2015)

    Article  ADS  Google Scholar 

  51. U.S. National Nuclear Data Center. http://www.nndc.bnl.gov/

  52. Y. Zhang, L. Bao, X. Guan, F. Pan, J.P. Draayer, Phys. Rev. C 88, 064305 (2013)

    Article  ADS  Google Scholar 

  53. F. Iachello, Phys. Rev. Lett. 85, 3580 (2000)

    Article  ADS  Google Scholar 

  54. F. Iachello, Phys. Rev. Lett. 87, 052502 (2001)

    Article  ADS  Google Scholar 

  55. F. Iachello, N.V. Zamfir, Phys. Rev. Lett. 92, 212501 (2004)

    Article  ADS  Google Scholar 

  56. R.F. Casten, N.V. Zamfir, Phys. Rev. Lett. 85, 3584 (2000)

    Article  ADS  Google Scholar 

  57. R.F. Casten, N.V. Zamfir, Phys. Rev. Lett. 87, 052503 (2001)

    Article  ADS  Google Scholar 

  58. N. Minkov, P. Yotov, S. Drenska, W. Scheid, D. Bonatsos, D. Lenis, D. Petrellis, Phys. Rev. C 73, 044315 (2006)

    Article  ADS  Google Scholar 

  59. N. Minkov, S. Drenska, M. Strecker, W. Scheid, H. Lenske, Phys. Rev. C 85, 034306 (2012)

    Article  ADS  Google Scholar 

  60. A. Volya, V. Zelevinsky, Phys. Lett. B 574, 27 (1995)

    Article  ADS  Google Scholar 

  61. M.A. Caprio, P. Cejnar, F. Iachello, Ann. Phys. 323, 1106–1135 (2008)

    Article  ADS  Google Scholar 

  62. R.F. Casten, E.A. McCutchan, J. Phys. G34, R285 (2007)

    Article  ADS  Google Scholar 

  63. P. Cejnar, J. Jolie, R.F. Casten, Rev. Mod. Phys. 82, 2155 (2010)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the NSFC (11790325) and the Chinese-Plolish joint project by NSFC (11961131010).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin Guan.

Additional information

Communicated by Mark Caprio.

Single-particle energies deduced from experimental data

Single-particle energies deduced from experimental data

Calculations for Nd, Sm, Gd and Dy isotopes are performed for valence neutrons in the sixth HO shell with a model space of six j levels, \(f_{5/2,7/2}\), \(p_{1/2,3/2}\), \(h_{9/2}\), \(i_{13/2}\), the single-particle energies \(\epsilon _{j}\) in the model Hamiltonian (1) for those three isotopic chains deduced from experimental data. As an approximation, we neglected the proton pair-excitations, only valence neutron pair-excitations are considered. These estimates are obtained from the binding energy \(E_{B}(Z,82)\), the binding energy \(E_{B}(Z,83)\) and the energy spectrum \(E_{j}(Z,83)\). The single-particle energy \(\tilde{\epsilon _{j}}=E_{B}(Z,83)-E_{B}(Z,82)+E_{j}(Z,83)\). The average single-particle energy is defined by

$$\begin{aligned} \epsilon _{avg}=\frac{\sum _{j}(2j+1)\tilde{\epsilon _{j}}}{\sum _{j}(2j+1)} \end{aligned}$$
(26)

The single-particle energy in Eq.(1) is given by \(\epsilon _{j}=\tilde{\epsilon _{j}}-\epsilon _{avg}\).

Calculations for \(^{144-157}\)Nd isotopes are performed for \(^{142}\)Nd core. The single-particle energies used for Eq.(1) are,

$$\begin{aligned} \epsilon _{7/2}= & {} -1.049 \ \mathrm{MeV} ~~~~~~~~~ \epsilon _{1/2}=0.256 \ \mathrm{MeV} \\ \epsilon _{3/2}= & {} -0.307 \ \mathrm{MeV} ~~~~~~~~~ \epsilon _{9/2}=0.358 \ \mathrm{MeV} \\ \epsilon _{13/2}= & {} 0.179 \ \mathrm{MeV}~~~~~~~~~~~ \epsilon _{5/2}=0.506 \ \mathrm{MeV} . \end{aligned}$$

These estimates are obtained from the \(^{142}\) Nd binding energy \(E_{B}(60,82)\), \(^{143}\)Nd binding energy \(E_{B}(60,83)\) [48] and \(^{143}\)Nd energy spectrum \(E_{j}(60,83)\) [49]. The average single-particle energy (\(\epsilon _{avg}=-5.07\) MeV) is subtracted. For the odd-A systems, the lowest theoretical energy corresponds to the odd particle occupying the \(f_{7/2}\) level for \(^{145-153}\)Nd and for \(^{155-157}\)Nd the \(p_{3/2}\) level is to be blocked by the odd particle.

For \(^{146-159}\)Sm isotopes, The single-particle energies used for (1) are,

$$\begin{aligned} \epsilon _{7/2}= & {} -1.056 \ \mathrm{MeV} ~~~~~~~~~ \epsilon _{9/2}= 0.368 \ \mathrm{MeV} \\ \epsilon _{3/2}= & {} -0.162 \ \mathrm{MeV} ~~~~~~~~~ \epsilon _{1/2}=0.552 \ \mathrm{MeV} \\ \epsilon _{13/2}= & {} 0.049 \ \mathrm{MeV}~~~~~~~~~~~ \epsilon _{5/2}=0.603 \ \mathrm{MeV} . \end{aligned}$$

These estimates are obtained from the \(^{144}\)Sm binding energy \(E_{B}(62,82)\), \(^{145}\)Sm binding energy \(E_{B}(62,83)\) [48]and \(^{145}\)Sm energy spectrum \(E_{j}(62,83)\) [49]. The average single-particle energy (\(\epsilon _{avg}=-5.8\) MeV) is subtracted. For the odd-A systems, the lowest theoretical energy corresponds to the odd particle occupying the \(f_{7/2}\) level for \(^{147-157}\)Sm and for \(^{159}\)Sm the \(p_{3/2}\) level is to be blocked by the odd particle.

For \(^{148-161}\)Gd isotopes, The single-particle energies used for (1) are,

$$\begin{aligned} \epsilon _{7/2}= & {} -1.089 \ \mathrm{MeV} ~~~~~~~~~ \epsilon _{9/2}=0.308 \ \mathrm{MeV} \\ \epsilon _{13/2}= & {} 0.092 \ \mathrm{MeV} ~~~~~~~~~~~ \epsilon _{1/2}=0.758 \ \mathrm{MeV} \\ \epsilon _{3/2}= & {} 0.063 \ \mathrm{MeV}~~~~~~~~~~~~ \epsilon _{5/2}=0.859 \ \mathrm{MeV} . \end{aligned}$$

These estimates are obtained from the \(^{146}\)Gd binding energy \(E_{B}(64,82)\), \(^{147}\)Gd binding energy \(E_{B}(64,83)\) [48] and \(^{147}\)Gd energy spectrum \(E_{j}(64,83)\) [49]. The average single-particle energy (\(\epsilon _{avg}=-6.25\) MeV) is subtracted. For the odd-A systems, the lowest theoretical energy corresponds to the odd particle occupying the \(f_{7/2}\) level for \(^{149-159}\)Gd and for \(^{161}\)Gd the \(i_{13/2}\) level is to be blocked by the odd particle.

For \(^{150-163}\)Dy isotopes, The single-particle energies used for (1) are,

$$\begin{aligned} \epsilon _{7/2}= & {} -1.011 \ \mathrm{MeV} ~~~~~~~~~ \epsilon _{9/2}=0.080 \ \mathrm{MeV} \\ \epsilon _{3/2}= & {} 0.023 \ \mathrm{MeV} ~~~~~~~~~~~ \epsilon _{1/2}=0.716 \ \mathrm{MeV} \\ \epsilon _{13/2}= & {} 0.062 \ \mathrm{MeV}~~~~~~~~~~~~ \epsilon _{5/2}=0.816 \ \mathrm{MeV} . \end{aligned}$$

These estimates are obtained from the \(^{148}\)Dy binding energy \(E_{B}(66,82)\), \(^{149}\)Dy binding energy \(E_{B}(66,83)\) [48] and \(^{149}\)Dy energy spectrum \(E_{j}(66,83)\) [49]. The average single-particle energy (\(\epsilon _{avg}=-6.90\) MeV) is subtracted. For the odd-A systems, the lowest theoretical energy corresponds to the odd particle occupying the \(f_{7/2}\) level for \(^{151-159}\)Dy and for \(^{161-163}\)Dy the \(p_{3/2}\) level is to be blocked by the odd particle.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yue, Y., Chen, Y. & Guan, X. Quantum phase transitions and spectral statistical properties in nuclei near \(N \sim 90\). Eur. Phys. J. A 56, 164 (2020). https://doi.org/10.1140/epja/s10050-020-00150-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-020-00150-8

Navigation