Skip to main content
Log in

Fluctuations, criticality and nonequilibrium effect of the QCD matter

  • Regular Article –Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

The multiplicity distributions of net-baryon number fluctuation in the first-order chiral phase transition associated with the nonequlibrium effect are investigated within the improved Polyakov–Nambu–Jona–Lasinio model. Compared with the idealized first-order transition in equilibrium, the calculation indicates that the density fluctuations in the metastable and unstable regions are more violent, which possibly affects the statistical distributions of density fluctuation in later stage of an expanding system. Signals induced by the first-order phase transition and those from the nonequilibrium effect are discussed in detail, which could be exploited to identify the first-order phase transition. Besides, the critical exponents of the thermodynamic quantities at both the critical end point and spinodal boundary are investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: There are no external data associated with the manuscript.]

References

  1. Y. Aoki, G. Endrodi, Z. Fodor, S.D. Katz, K.K. Szabo, Nature 443, 675 (2006)

    ADS  Google Scholar 

  2. A. Bazavov et al., hotQCD Collaboration. Phys. Rev. D 85, 054503 (2012)

  3. S. Borsányi, Z. Fodor, S.D. Katz, S. Krieg, C. Ratti, K.K. Szabó, Phys. Rev. Lett. 111, 062005 (2013)

    ADS  Google Scholar 

  4. A. Bazavov et al., hotQCD Collaboration. Phys. Rev. D. 90, 094503 (2014)

  5. A. Bazavov et al., hotQCD Collaboration. Phys. Rev. D 96, 074510 (2017)

  6. S. Borsányi, Z. Fodor, C. Hoelbling, S.D. Katz, S. Krieg, K.K. Sabzó, Phys. Lett. B 730, 99 (2014)

    ADS  Google Scholar 

  7. K. Fukushima, Phys. Rev. D 77, 114028 (2008)

    ADS  Google Scholar 

  8. C. Ratti, M.A. Thaler, W. Weise, Phys. Rev. D 73, 014019 (2006)

    ADS  Google Scholar 

  9. P. Costa, M.C. Ruivo, C.A. de Sousa, H. Hansen, Symmetry 2, 1338 (2010)

    Google Scholar 

  10. W.J. Fu, Z. Zhang, Y.X. Liu, Phys. Rev. D 77, 014006 (2008)

    ADS  Google Scholar 

  11. T. Sasaki, J. Takahashi, Y. Sakai, H. Kouno, M. Yahiro, Phys. Rev. D 85, 056009 (2012)

    ADS  Google Scholar 

  12. M. Ferreira, P. Costa, C. Providência, Phys. Rev. D 89, 036006 (2014)

    ADS  Google Scholar 

  13. B.J. Schaefer, M. Wagner, J. Wambach, Phys. Rev. D 81, 074013 (2010)

    ADS  Google Scholar 

  14. V. Skokov, B. Friman, K. Redlich, Phys. Rev. C 83, 054904 (2011)

    ADS  Google Scholar 

  15. X.Y. Xin, S.X. Qin, Y.X. Liu, Phys. Rev. D 90, 076006 (2014)

    ADS  Google Scholar 

  16. S.X. Qin, L. Chang, H. Chen, Y.X. Liu, C.D. Roberts, Phys. Rev. Lett. 106, 172301 (2011)

    ADS  Google Scholar 

  17. F. Gao, J. Chen, Y.X. Liu, S.X. Qin, C.D. Roberts, S.M. Schmidt, Phys. Rev. D 93, 094019 (2016)

    ADS  Google Scholar 

  18. C.S. Fischer, J. Luecker, C.A. Welzbacher, Phys. Rev. D 90, 034022 (2014)

    ADS  Google Scholar 

  19. C. Shi, Y.L. Wang, Y. Jiang, Z.F. Cui, H.S. Zong, JHEP 1407, 014 (2014)

    ADS  Google Scholar 

  20. M.M. Aggarwal et al., STAR Collaboration. Phys. Rev. Lett. 105, 022302 (2010)

  21. L. Adamczyk et al., STAR Collaboration. Phys. Rev. Lett. 112, 032302 (2014)

  22. X. Luo (STAR Collaboration), Proc. Sci. CPOD 2014, 019 (2015)

  23. X. Luo, Nucl. Phys. A 956, 75 (2016)

    ADS  Google Scholar 

  24. X. Luo, N. Xu, Nucl. Sci. Tech. 28, 112 (2017)

    Google Scholar 

  25. G.Y. Shao, Z.D. Tang, X.Y. Gao, W.B. He, Eur. Phys. J. C 78, 138 (2018)

    ADS  Google Scholar 

  26. J.W. Chen, J. Deng, H. Kohyama, L. Labun, Phys. Rev. D 93, 034037 (2016)

    ADS  Google Scholar 

  27. G.A. Almási, B. Friman, K. Redlich, Phys. Rev. D 96, 014027 (2017)

    ADS  Google Scholar 

  28. P. Chomaz, M. Colonna, J. Randrup, Phys. Rep. 389, 263 (2004)

    ADS  Google Scholar 

  29. J. Randrup, Phys. Rev. Lett. 92, 122301 (2004)

    ADS  Google Scholar 

  30. I.N. Mishustin, Phys. Rev. Lett. 82, 4779 (1999)

    ADS  Google Scholar 

  31. V. Koch, A. Majumder, J. Randrup, Phys. Rev. C 72, 064903 (2005)

    ADS  Google Scholar 

  32. C. Sasaki, B. Friman, K. Redlich, Phys. Rev. Lett. 99, 232301 (2007)

    ADS  Google Scholar 

  33. C. Sasaki, B. Friman, K. Redlich, Phys. Rev. D 77, 034024 (2008)

    ADS  Google Scholar 

  34. J. Randrup, Phys. Rev. C 79, 054911 (2009)

    ADS  Google Scholar 

  35. J. Randrup, Phys. Rev. C 82, 034902 (2010)

    ADS  Google Scholar 

  36. J. Steinheimer, J. Randrup, Phys. Rev. Lett. 109, 212301 (2012)

    ADS  Google Scholar 

  37. J. Steinheimer, J. Randrup, Eur. Phys. J. A 52, 239 (2016)

    ADS  Google Scholar 

  38. F. Li, C.M. Ko, Phys. Rev. C 93, 035205 (2016)

    ADS  Google Scholar 

  39. C. Herold, M. nahrgang, I. Mishustin, M. Bleicher, Nucl. Phys. A 925, 14 (2014)

    ADS  Google Scholar 

  40. C. Sasaki, B. Friman, K. Redlich, Phys. Rev. D 75, 054026 (2007)

    ADS  Google Scholar 

  41. M. Cheng et al., Phys. Rev. D 79, 074505 (2009)

    ADS  Google Scholar 

  42. A. Bazavov et al., hotQCD Collaboration. Phys. Rev. D. 86, 034509 (2012)

  43. M.A. Stephanov, Phys. Rev. Lett. 107, 052301 (2011)

    ADS  Google Scholar 

  44. W.J. Fu, Y.L. Wu, Phys. Rev. D 82, 074013 (2010)

    ADS  Google Scholar 

  45. B.J. Schaefer, M. Wagner, Phys. Rev. D 85, 034027 (2012)

    ADS  Google Scholar 

  46. B. Friman, F. Karsch, K. Redlich, V. Skokov, Eur. Phys. J. C 71, 1694 (2011)

    ADS  Google Scholar 

  47. B. Friman, Nucl. Phys. A 928, 198 (2014)

    ADS  Google Scholar 

  48. V. Skokov, B. Stokic, B. Friman, K. Redlich, Phys. Rev. C 82, 015206 (2010)

    ADS  Google Scholar 

  49. V. Skokov, B. Friman, E. Nakano, K. Redlich, B.-J. Schaefer, Phys. Rev. D 82, 034029 (2010)

    ADS  Google Scholar 

  50. F. Karsch, B.-J. Schaefer, M. Wagner, J. Wambach, Phys. Lett. B 698, 256 (2011)

    ADS  Google Scholar 

  51. K. Morita, B. Friman, K. Redlich, Phys. Lett. B 741, 178 (2015)

    ADS  Google Scholar 

  52. S. Rößner, C. Ratti, W. Weise, Phys. Rev. D 75, 034007 (2007)

    ADS  Google Scholar 

  53. P. Rehberg, S.P. Klevansky, J. Hüfner, Phys. Rev. C 53, 410 (1996)

    ADS  Google Scholar 

  54. B.J. Schaefer, J. Wambach, Phys. Rev. D 75, 085015 (2007)

    ADS  Google Scholar 

  55. N. Li, M. Huang, JHEP 1712, 042 (2017)

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank Yu-xin Liu and Wei-jie Fu for fruitful discussion. This work is supported by the National Natural Science Foundation of China under Grant No. 11875213 and the Natural Science Basic Research Plan in Shaanxi Province of China (Program No. 2019JM-050).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guo-yun Shao.

Additional information

Communicated by Rishi Sharma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shao, Gy., Gao, Xy. & He, Wb. Fluctuations, criticality and nonequilibrium effect of the QCD matter. Eur. Phys. J. A 56, 115 (2020). https://doi.org/10.1140/epja/s10050-020-00130-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-020-00130-y

Navigation