Skip to main content

Advertisement

Log in

Turning the nuclear energy density functional method into a proper effective field theory: reflections

  • Regular Article -Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

Nuclear energy density functionals (EDFs) have a long history of success in reproducing properties of nuclei across the table of the nuclides. They capture quantitatively the emergent features of bound nuclei, such as nuclear saturation and pairing, yet greater accuracy and improved uncertainty quantification are actively sought. Implementations of phenomenological EDFs are suggestive of effective field-theory (EFT) formulations and there are hints of an underlying power counting. Multiple paths are possible in trying to turn the nuclear EDF method into a proper EFT. I comment on the current situation and speculate on how to proceed using an effective action formulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: This article is a commentary for the EPJA topical issue: “The tower of effective (field) theories and the emergence of nuclear phenomena” and therefore does not include data.]

Notes

  1. The term “effective field theory” is often restricted to mean a local Lagrangian formulation of a low-energy theory, with “effective theory” a more general designation. We mostly have in mind strict EFTs but for convenience will use that designation even for the more general cases.

  2. The important distinction between DFT as formalized for the Coulomb many-body problem and the nuclear EDF approach has been stressed by Duguet and collaborators [26]. We will not address this issue explictly until we consider zero modes in Sect. 3.5. Until then we will generally use DFT and EDF interchangeably.

  3. Because \(v_{\mathrm{ext}}\) is typically given rather than eliminated, for a closer analogy we would also define \(\varOmega _\mu (N) \equiv F(N) - \mu N\), which depends explicitly on both N and \(\mu \). This gives the grand potential when minimized with respect to N [86].

  4. A Minkowski-space formulation of the effective action with time-dependent sources leads naturally to an RPA-like generalization of DFT that can be used to calculate properties of collective excitations.

  5. The functionals will change with resolution or field redefinitions; only stationary points are observables. This can be seen from Eq. (18), where \(\varGamma [\rho ]\) is not the expectation value of \({\widehat{H}}\) in an eigenstate unless \(J = J[\rho _\mathrm{gs}]\).

  6. For the Minkowski-space version of this discussion, see Ref. [90].

  7. There are important formal details [94], such as that we need E[v] to be concave to carry out the transform.

  8. In other contexts, such densities are called “intrinsic”, but this has a different meaning in the context of symmetry breaking, so “internal” is typically used instead.

References

  1. H. Georgi, Ann. Rev. Nucl. Part. Sci. 43, 209 (1993)

    ADS  Google Scholar 

  2. C.P. Burgess, Ann. Rev. Nucl. Part. Sci. 57, 329 (2007). arXiv:hep-th/0701053

    ADS  Google Scholar 

  3. R.J. Furnstahl, G. Rupak, T. Schäfer, Ann. Rev. Nucl. Part. Sci. 58, 1 (2008). arXiv:0801.0729

    ADS  Google Scholar 

  4. M. Bender, P.H. Heenen, P.G. Reinhard, Rev. Mod. Phys. 75, 121 (2003)

    ADS  Google Scholar 

  5. N. Schunck (ed.), Energy Density Functional Methods for Atomic Nuclei (IOP Publishing, Bristol, 2019), pp. 2053–2563

    Google Scholar 

  6. A. Manohar, H. Georgi, Nucl. Phys. B 234, 189 (1984)

    ADS  Google Scholar 

  7. E. Epelbaum, H.W. Hammer, U.G. Meissner, Rev. Mod. Phys. 81, 1773 (2009). arXiv:0811.1338

    ADS  Google Scholar 

  8. H.W. Hammer, C. Ji, D.R. Phillips, J. Phys. 44, 103002 (2017). arXiv:1702.08605

    ADS  Google Scholar 

  9. A. Migdal, Theory of Finite Fermi Systems and Applications to Atomic Nuclei, Interscience Monographs and Texts in Physics and Astronomy, vol. 19 (Interscience Publishers, Geneva, 1967)

    Google Scholar 

  10. J. Polchinski (1992). arXiv:hep-th/9210046

  11. R. Shankar, Rev. Mod. Phys. 66, 129 (1994)

    ADS  Google Scholar 

  12. T. Papenbrock, H. Weidenmueller, Phys. Rev. C 89, 014334 (2014). arXiv:1307.1181

    ADS  Google Scholar 

  13. A. Bulgac, M.M. Forbes, S. Jin, R. Navarro Perez, N. Schunck, Phys. Rev. C 97, 044313 (2018). arXiv:1708.08771

    ADS  Google Scholar 

  14. M. Harakeh, A. Woude, Giant Resonances: Fundamental High-Frequency Modes of Nuclear Excitation, Oxford Science Publications (Oxford University Press, Oxford, 2001)

    Google Scholar 

  15. J.L. Friar, D.G. Madland, B.W. Lynn, Phys. Rev. C 53, 3085 (1996). arXiv:nucl-th/9512011

    ADS  Google Scholar 

  16. J.J. Rusnak, R.J. Furnstahl, Nucl. Phys. A 627, 495 (1997). arXiv:nucl-th/9708040

    ADS  Google Scholar 

  17. M. Kortelainen, R.J. Furnstahl, W. Nazarewicz, M.V. Stoitsov, Phys. Rev. C 82, 011304 (2010). arXiv:1005.2552

    ADS  Google Scholar 

  18. R.J. Furnstahl, A. Schwenk, J. Phys. G 37, 064004 (2010). arXiv:1001.0327

    ADS  Google Scholar 

  19. D. Vautherin, D.M. Brink, Phys. Rev. C 5, 626 (1972)

    ADS  Google Scholar 

  20. R.J. Furnstahl, B.D. Serot, Nucl. Phys. A 671, 447 (2000). arXiv:nucl-th/9911019

    ADS  Google Scholar 

  21. G.F. Bertsch, B. Sabbey, M. Uusnakki, Phys. Rev. C 71, 054311 (2005). arXiv:nucl-th/0412091

    ADS  Google Scholar 

  22. E. Epelbaum, U.G. Meissner, W. Gloeckle, C. Elster, Phys. Rev. C 65, 044001 (2002). arXiv:nucl-th/0106007

    ADS  Google Scholar 

  23. B.N. Lu, N. Li, S. Elhatisari, D. Lee, E. Epelbaum, U.G. Meißner (2018). arXiv:1812.10928

  24. C. Drischler, K. Hebeler, A. Schwenk, Phys. Rev. Lett. 122, 042501 (2019). arXiv:1710.08220

    ADS  Google Scholar 

  25. J.A. Melendez, R.J. Furnstahl, D.R. Phillips, M.T. Pratola, S. Wesolowski (2019). arXiv:1904.10581

  26. T. Duguet, J. Sadoudi, J. Phys. G 37, 064009 (2010). arXiv:1001.0673

    ADS  Google Scholar 

  27. A. Bhattacharyya, R.J. Furnstahl, Phys. Lett. B 607, 259 (2005). arXiv:nucl-th/0410105

    ADS  Google Scholar 

  28. J.E. Drut, R.J. Furnstahl, L. Platter, Prog. Part. Nucl. Phys. 64, 120 (2010). arXiv:0906.1463

    ADS  Google Scholar 

  29. Z. Davoudi (NPLQCD), Light nuclei from lattice QCD: spectrum, structure and reactions, in 22nd International Conference on Few-Body Problems in Physics (FB22) Caen, France, July 9–13, 2018 (2019). arXiv:1902.04959

  30. T. Iritani, S. Aoki, T. Doi, T. Hatsuda, Y. Ikeda, T. Inoue, N. Ishii, H. Nemura, K. Sasaki, Phys. Rev. D 96, 034521 (2017). arXiv:1703.07210

    ADS  Google Scholar 

  31. S.R. Beane et al. (2017). arXiv:1705.09239

  32. T. Iritani, S. Aoki, T. Doi, T. Hatsuda, Y. Ikeda, T. Inoue, N. Ishii, H. Nemura, K. Sasaki (HAL QCD), JHEP 03, 007 (2019). arXiv:1812.08539

  33. H. Hergert, J. Yao, T.D. Morris, N.M. Parzuchowski, S.K. Bogner, J. Engel, J. Phys. Conf. Ser. 1041, 012007 (2018). arXiv:1805.09221

    Google Scholar 

  34. R. Machleidt, D. Entem, Phys. Rep. 503, 1 (2011). arXiv:1105.2919

    ADS  Google Scholar 

  35. M. Hjorth-Jensen, M.P. Lombardo, U. van Kolck, Lect. Notes Phys. 936, 1 (2017)

    ADS  Google Scholar 

  36. P. Maris, M.A. Caprio, J.P. Vary, Phys. Rev. C 91, 014310 (2015) (erratum: Phys. Rev. C 99, 029902, 2019). arXiv:1409.0881

  37. T. Duguet, J. Phys. G 42, 025107 (2015). arXiv:1406.7183

    ADS  Google Scholar 

  38. T. Duguet, A. Signoracci, J. Phys. G 44, 015103 (2017) (erratum: J. Phys.G 44(4), 049601, 2017). arXiv:1512.02878

  39. T. Duguet, M. Bender, J.P. Ebran, T. Lesinski, V. Somà, Eur. Phys. J. A 51, 162 (2015). arXiv:1502.03672

    ADS  Google Scholar 

  40. J. Ripoche, D. Lacroix, D. Gambacurta, J.P. Ebran, T. Duguet, Phys. Rev. C 95, 014326 (2017). arXiv:1610.04063

    ADS  Google Scholar 

  41. A. Gezerlis, I. Tews, E. Epelbaum, S. Gandolfi, K. Hebeler et al., Phys. Rev. Lett. 111, 032501 (2013). arXiv:1303.6243

    ADS  Google Scholar 

  42. M. Piarulli, L. Girlanda, R. Schiavilla, R. Navarro Pérez, J.E. Amaro, E. Ruiz Arriola, Phys. Rev. C 91, 024003 (2015). arXiv:1412.6446

    ADS  Google Scholar 

  43. E. Epelbaum, H. Krebs, U.G. Meißner, Eur. Phys. J. A 51, 53 (2015). arXiv:1412.0142

    ADS  Google Scholar 

  44. P. Reinert, H. Krebs, E. Epelbaum, Eur. Phys. J. A 54, 86 (2018). arXiv:1711.08821

    ADS  Google Scholar 

  45. A. Dyhdalo, R.J. Furnstahl, K. Hebeler, I. Tews, Phys. Rev. C 94, 034001 (2016). arXiv:1602.08038

    ADS  Google Scholar 

  46. K. Hebeler, S. Bogner, R. Furnstahl, A. Nogga, A. Schwenk, Phys. Rev. C 83, 031301 (2011). arXiv:1012.3381

    ADS  Google Scholar 

  47. A. Dyhdalo, S.K. Bogner, R.J. Furnstahl, Phys. Rev. C 96, 054005 (2017). arXiv:1707.07199

    ADS  Google Scholar 

  48. N. Kaiser, W. Weise, Nucl. Phys. A 836, 256 (2010). arXiv:0912.3207

    ADS  Google Scholar 

  49. J.W. Holt, N. Kaiser, W. Weise, Prog. Part. Nucl. Phys. 73, 35 (2013). arXiv:1304.6350

    ADS  Google Scholar 

  50. R. Navarro Pérez, N. Schunck, A. Dyhdalo, R.J. Furnstahl, S.K. Bogner, Phys. Rev. C 97, 054304 (2018). arXiv:1801.08615

    ADS  Google Scholar 

  51. A. Dyhdalo, S.K. Bogner, R.J. Furnstahl, Phys. Rev. C 95, 054314 (2017). arXiv:1611.03849

    ADS  Google Scholar 

  52. S. Goriely, S. Hilaire, M. Girod, S. Péru, Eur. Phys. J. A 52, 202 (2016)

    ADS  Google Scholar 

  53. M. Bender, G.F. Bertsch, P.H. Heenen, Phys. Rev. Lett. 94, 102503 (2005). arXiv:nucl-th/0410023

    ADS  Google Scholar 

  54. Y.N. Zhang, S.K. Bogner, R.J. Furnstahl, Phys. Rev. C 98, 064306 (2018). arXiv:1807.02916

    ADS  Google Scholar 

  55. H.W. Hammer, R.J. Furnstahl, Nucl. Phys. A 678, 277 (2000). arXiv:nucl-th/0004043

    ADS  Google Scholar 

  56. R.J. Furnstahl, H.W. Hammer, N. Tirfessa, Nucl. Phys. A 689, 846 (2001). arXiv:nucl-th/0010078

    ADS  Google Scholar 

  57. R.J. Furnstahl, H.W. Hammer, Phys. Lett. B 531, 203 (2002). arXiv:nucl-th/0108069

    ADS  Google Scholar 

  58. R.J. Furnstahl, H.W. Hammer, Ann. Phys. 302, 206 (2002). arXiv:nucl-th/0208058

    ADS  Google Scholar 

  59. S.J. Puglia, A. Bhattacharyya, R.J. Furnstahl, Nucl. Phys. A 723, 145 (2003). arXiv:nucl-th/0212071

    ADS  Google Scholar 

  60. A. Bhattacharyya, R.J. Furnstahl, Nucl. Phys. A 747, 268 (2005). arXiv:nucl-th/0408014

    ADS  Google Scholar 

  61. R.J. Furnstahl, H.W. Hammer, S.J. Puglia, Ann. Phys. 322, 2703 (2007). arXiv:nucl-th/0612086

    ADS  Google Scholar 

  62. C.J. Yang, M. Grasso, K. Moghrabi, U. van Kolck, Phys. Rev. C 95, 054325 (2017). arXiv:1312.5949

    ADS  Google Scholar 

  63. C.J. Yang, M. Grasso, D. Lacroix, Phys. Rev. C 96, 034318 (2017). arXiv:1706.00258

    ADS  Google Scholar 

  64. A. Boulet, D. Lacroix (2019). arXiv:1902.05477

  65. D. Lacroix, Phys. Rev. A 94, 043614 (2016). arXiv:1608.08411

    ADS  Google Scholar 

  66. S. König, H.W. Grießhammer, H.W. Hammer, U. van Kolck, Phys. Rev. Lett. 118, 202501 (2017). arXiv:1607.04623

    ADS  Google Scholar 

  67. U. van Kolck, J. Phys. Conf. Ser. 966, 012014 (2018)

    Google Scholar 

  68. M. Grasso, D. Lacroix, U. van Kolck, Phys. Scr. 91, 063005 (2016)

    ADS  Google Scholar 

  69. M. Grasso, Prog. Part. Nucl. Phys. 106, 256 (2019). arXiv:1811.01039

    ADS  Google Scholar 

  70. B.G. Carlsson, J. Dobaczewski, M. Kortelainen, Phys. Rev. C 78, 044326 (2008). arXiv:0807.4925

    ADS  Google Scholar 

  71. F. Raimondi, B.G. Carlsson, J. Dobaczewski, Phys. Rev. C 83, 054311 (2011). arXiv:1103.0682

    ADS  Google Scholar 

  72. J. Dobaczewski, K. Bennaceur, F. Raimondi, K. Bennaceur, F. Raimondi, J. Phys. G 39, 125103 (2012). arXiv:1207.1295

    Google Scholar 

  73. F. Raimondi, K. Bennaceur, J. Dobaczewski, J. Phys. G 41, 055112 (2014). arXiv:1402.1556

    ADS  Google Scholar 

  74. K. Bennaceur, A. Idini, J. Dobaczewski, P. Dobaczewski, M. Kortelainen, F. Raimondi, J. Phys. G 44, 045106 (2017). arXiv:1611.09311

    ADS  Google Scholar 

  75. J. Dobaczewski, J. Phys. G 43, 04LT01 (2016). arXiv:1507.00697

    Google Scholar 

  76. E.E. Saperstein, S.V. Tolokonnikov, Phys. Atom. Nucl. 79, 1030 (2016) (Yad. Fiz. 79(6), 703, 2016)

  77. A.B. Migdal, Rev. Mod. Phys. 50, 107 (1978)

    ADS  Google Scholar 

  78. R. Fukuda, T. Kotani, Y. Suzuki, S. Yokojima, Prog. Theor. Phys. 92, 833 (1994)

    ADS  Google Scholar 

  79. A. Schwenk, J. Polonyi, Towards density functional calculations from nuclear forces, in 32nd International Workshop on Gross Properties of Nuclei and Nuclear Excitation: Probing Nuclei and Nucleons with Electrons and Photons (Hirschegg 2004) Hirschegg, Austria, January 11–17, 2004 (2004), pp. 273–282. arXiv:nucl-th/0403011

  80. S. Kemler, J. Braun, J. Phys. G 40, 085105 (2013). arXiv:1304.1161

    ADS  Google Scholar 

  81. S. Kemler, M. Pospiech, J. Braun, J. Phys. G 44, 015101 (2017). arXiv:1606.04388

    ADS  Google Scholar 

  82. H. Liang, Y. Niu, T. Hatsuda, Phys. Lett. B 779, 436 (2018). arXiv:1710.00650

    ADS  Google Scholar 

  83. T. Yokota, K. Yoshida, T. Kunihiro, Phys. Rev. C 99, 024302 (2019). arXiv:1803.07439

    ADS  Google Scholar 

  84. T. Yokota, T. Naito, Phys. Rev. B 99, 115106 (2019)

    ADS  Google Scholar 

  85. J. Polonyi, K. Sailer, Phys. Rev. B 66, 155113 (2002). arXiv:cond-mat/0108179

    ADS  Google Scholar 

  86. N. Argaman, G. Makov, Am. J. Phys. 68, 69 (2000)

    ADS  Google Scholar 

  87. J.W. Negele, H. Orland, Quantum Many-Particle Systems (Addison-Wesley, Redwood City, 1988)

    MATH  Google Scholar 

  88. M. Valiev, G.W. Fernando (1997). arXiv:cond-mat/9702247

  89. J. Zinn-Justin, Quantum Field Theory and Critical Phenomena (Oxford University Press, New York, 2002)

    MATH  Google Scholar 

  90. S. Weinberg, The Quantum Theory of Fields: vol. II. Modern Applications (Cambridge University Press, New York, 1996)

    MATH  Google Scholar 

  91. W. Kutzelnigg, J. Mol. Struct. 768, 163 (2006)

    Google Scholar 

  92. E.H. Lieb, Int. J. Quantum Chem. 24, 243 (1983)

    Google Scholar 

  93. P. Hohenberg, W. Kohn, Phys. Rev. 136, B864 (1964)

    ADS  Google Scholar 

  94. H. Eschrig, The Fundamentals of Density Functional Theory (Edition am Gutenbergplatz, Leipzig, 2003)

    MATH  Google Scholar 

  95. M.E. Peskin, D.V. Schroeder, An Introduction to Quantum Field Theory (Addison-Wesley, Reading, 1995)

    Google Scholar 

  96. T. Duguet, T. Lesinski, AIP Conf. Proc. 1165, 243 (2009). arXiv:0907.1043

    ADS  Google Scholar 

  97. D.R. Bes, J. Kurchan, The Treatment of Collective Coordinates in Many-Body Systems (World Scientific, Singapore, 1990)

    Google Scholar 

  98. N. Nagaosa, Quantum Field Theory in Condensed Matter Physics (Springer, Berlin, 1999)

    MATH  Google Scholar 

  99. A. Altland, B. Simons, Condensed Matter Field Theory (Cambridge University Press, Cambridge, 2006)

    MATH  Google Scholar 

  100. R.J. Furnstahl, Lect. Notes Phys. 852, 133 (2012). arXiv:nucl-th/0702040

    ADS  MathSciNet  Google Scholar 

  101. M. Stone, The Physics of Quantum Fields (Springer, Berlin, 2000)

    MATH  Google Scholar 

  102. F. Grummer, J. Speth, J. Phys. G 32, R193 (2006). arXiv:nucl-th/0603052

    ADS  Google Scholar 

  103. J.P. Blaizot, G. Ripka, Quantum Theory of Finite Systems (MIT Press, Cambridge, 1985)

    Google Scholar 

  104. P. Ring, P. Schuck, The Nuclear Many-Body Problem (Springer, Berlin, 2005)

    Google Scholar 

  105. M.V. Stoitsov, J. Dobaczewski, R. Kirchner, W. Nazarewicz, J. Terasaki, Phys. Rev. C 76, 014308 (2007). arXiv:nucl-th/0610061

    ADS  Google Scholar 

  106. J. Dobaczewski, M.V. Stoitsov, W. Nazarewicz, P.G. Reinhard, Phys. Rev. C 76, 054315 (2007). arXiv:0708.0441

    ADS  Google Scholar 

  107. D. Lacroix, T. Duguet, M. Bender, Phys. Rev. C 79, 044318 (2009). arXiv:0809.2041

    ADS  Google Scholar 

  108. M. Bender, T. Duguet, D. Lacroix, Phys. Rev. C 79, 044319 (2009). arXiv:0809.2045

    ADS  Google Scholar 

  109. T. Duguet, M. Bender, K. Bennaceur, D. Lacroix, T. Lesinski, Phys. Rev. C 79, 044320 (2009). arXiv:0809.2049

    ADS  Google Scholar 

  110. J. Engel, Phys. Rev. C 75, 014306 (2007). arXiv:nucl-th/0610043

    ADS  Google Scholar 

  111. B.G. Giraud, B.K. Jennings, B.R. Barrett, Phys. Rev. A 78, 032507 (2008). arXiv:0707.3099

    ADS  Google Scholar 

  112. N. Barnea, Phys. Rev. C 76, 067302 (2007). arXiv:0711.0963

    ADS  Google Scholar 

  113. B.G. Giraud, Phys. Rev. C 77, 014311 (2008)

    ADS  MathSciNet  Google Scholar 

  114. B.G. Giraud, Phys. Rev. C 78, 014307 (2008). arXiv:0801.3447

    ADS  MathSciNet  Google Scholar 

  115. J. Messud, M. Bender, E. Suraud (2009). arXiv:0904.0162

  116. N. Chamel, Phys. Rev. C 82, 061307 (2010). arXiv:1012.4646

    ADS  Google Scholar 

  117. J. Messud, Phys. Rev. C 87, 024302 (2013) (addendum: Phys. Rev. C 87(2), 029904, 2013). arXiv:1207.0414

  118. G. Hagen, T. Papenbrock, D.J. Dean, Phys. Rev. Lett. 103, 062503 (2009). arXiv:0905.3167

    ADS  Google Scholar 

  119. R. Rajaraman, Solitons and Instantons (North Holland, New York, 1982)

    MATH  Google Scholar 

  120. D. Nemeschansky, C.R. Preitschopf, M. Weinstein, Ann. Phys. 183, 226 (1988)

    ADS  Google Scholar 

  121. D.R. Bes, Phys. Scr. 91, 063010 (2016)

    ADS  Google Scholar 

  122. D.R. Bes, O. Civitarese, Am. J. Phys. 70, 548 (2002)

    ADS  Google Scholar 

  123. M.G. Bertolli, T. Papenbrock, Phys. Rev. C 78, 064310 (2008). arXiv:0805.2856

    ADS  Google Scholar 

Download references

Acknowledgements

I acknowledge many illuminating discussions over many years with my colleagues on effective field theory and energy density functionals that have contributed to my reflections here. However, all misunderstandings, misstatements, and misinterpretations are my own. Supported in part by the US National Science Foundation under Grant no. PHY-1614460 and the NUCLEI SciDAC Collaboration under US Department of Energy MSU subcontract RC107839-OSU.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. J. Furnstahl.

Additional information

Communicated by T. Duguet

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Furnstahl, R.J. Turning the nuclear energy density functional method into a proper effective field theory: reflections. Eur. Phys. J. A 56, 85 (2020). https://doi.org/10.1140/epja/s10050-020-00095-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-020-00095-y

Navigation