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Abstract We present a lattice QCD investigation of the ρ-
meson with Nf = 2 + 1 + 1 dynamical quark flavours for
the first time. The calculation is performed based on gauge
configuration ensembles produced by the ETM Collabora-
tion with three lattice spacing values and pion masses rang-
ing from 230 to 500 MeV. Applying the Lüscher method
phase-shift curves are determined for all ensembles sepa-
rately. Assuming a Breit–Wigner form, the ρ-meson mass
and width are determined by a fit to these phase-shift curves.
Mass and width combined are then extrapolated to the chiral
limit, while lattice artefacts are not detectable within our sta-
tistical uncertainties. For the ρ-meson mass extrapolated to
the physical point we find good agreement with experiment.
The corresponding decay width differs by about two standard
deviations from the experimental value.

1 Introduction

The ρ-meson represents together with the (in-)famous σ -
meson ( f0(500)) one of the most prominent meson reso-
nances in the standard model. The ρ decays almost exclu-
sively to two pions and the experimental phase-shift curve
[1,2] is a textbook example for a relativistic Breit–Wigner
form. Moreover, the ρ, being the lightest vector meson, plays
a fundamental role in many processes within the context of
vector meson dominance; for a review see Ref. [3].

Therefore, an investigation of the ρ-meson properties
from first principles with lattice QCD is highly desirable.
However, unstable particles require special care in lattice
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QCD: interaction properties can only be computed using the
by now famous Lüscher method [4–6]. With its help, infi-
nite volume scattering properties can be extracted from finite
volume energy shifts. In the meanwhile the Lüscher method
has been developed further in many directions, for a review
see Ref. [7], in particular also for three particle systems; see
for instance Refs. [8–13]. For this paper most relevant is the
derivation of the formalism in moving frames [14–16], which
allows one to map out the phase shift at many different scat-
tering momenta, without the need to study different volumes.

For a long time the Lüscher method was difficult to apply
to the ρ in realistic lattice calculations, albeit there are some
early attempts [17,18]. By now, there are a number of inves-
tigations of the ρ-meson from lattice QCD using the Lüscher
method [15,19–27]. The first computation with light dynam-
ical up and down quarks can be found in the pioneering work
of Ref. [15]. Subsequent investigations focused on different
aspects like large operator bases [28] or asymmetric boxes
[25]. Recently, a first investigation involving different lat-
tice spacings and a range of pion masses has been performed
[27]. However, in the latter reference chiral and continuum
extrapolations were not performed.

With this paper we fill this gap and present a computation
of the ρ-meson applying the Lüscher method using gauge
ensembles generated with Nf = 2 + 1 + 1 dynamical quark
flavours by the ETM Collaboration at three different lattice
spacing values and a wide range of pion masses [29,30].
This allows us to perform a chiral and continuum extrap-
olation of the ρ-meson mass and width. Note that in Ref.
[31] the mass and width of the ρ-meson has been determined
on the same gauge configurations, however, using an inverse
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Table 1 The gauge ensembles used in this study. For the labeling of the ensembles we adopted the notation in Ref. [29]. In addition to the relevant
input parameters we give the lattice volume and the number of evaluated configurations, Nconf

Ensemble β aμ� aμσ aμδ (L/a)3 × T/a Nconf

A30.32 1.90 0.0030 0.150 0.190 323 × 64 623

A40.24 1.90 0.0040 0.150 0.190 243 × 48 997

A40.32 1.90 0.0040 0.150 0.190 323 × 64 493

A60.24 1.90 0.0060 0.150 0.190 243 × 48 618

A80.24 1.90 0.0080 0.150 0.190 243 × 48 611

A100.24 1.90 0.0100 0.150 0.190 243 × 48 307

B25.32 1.95 0.0025 0.135 0.170 323 × 64 197

B35.32 1.95 0.0035 0.135 0.170 323 × 64 493

B35.48 1.95 0.0035 0.135 0.170 483 × 96 265

B55.32 1.95 0.0055 0.135 0.170 323 × 64 613

D15.48 2.10 0.0015 0.120 0.1385 483 × 96 304

D30.48 2.10 0.0030 0.120 0.1385 483 × 96 241

D45.32sc 2.10 0.0045 0.0937 0.1077 323 × 64 588

Lüscher approach based on the vector current only combined
with a parametrisation of the pion form factor.

This paper is organised as follows: after presenting the
lattice action and its parameters in Sect. 2, we discuss our
methods in Sect. 3. In Sect. 4 we present our results, the
main result being the continuum extrapolated values of Mρ

and Γρ at the physical pion mass value reading

Mρ = 769(19) MeV, Γρ = 129(7) MeV .

In Sect. 5 we discuss our results and put them into perspective,
followed by a summary in Sect. 6. More technical details can
be found in the Appendix.

2 Lattice action

The lattice details for the investigation presented here are
very similar to those we used in our previous studies on
hadron-hadron interactions [32–35]. We use Nf = 2 + 1 + 1
flavour lattice QCD ensembles generated by the ETM Collab-
oration, for which details can be found in Refs. [29,30,36].
The parameters relevant for this paper are compiled in
Table 1: we give for each ensemble the inverse gauge cou-
pling β = 6/g2

0, the bare values for the quark mass param-
eters μ�,μσ and μδ , the lattice volume and the number of
configurations on which we estimated the relevant quantities.

The ensembles were generated using the Nf = 2 + 1 + 1
twisted mass fermion action [37–39]. For orientation, the
β values 1.90, 1.95 and 2.10 correspond to lattice spacing
values of a ∼ 0.089 fm, 0.082 fm and a ∼ 0.062 fm,
respectively; see also Table 2. The ensembles were generated
at so-called maximal twist, which guarantees automatic order
O(a) improvement for almost all physical quantities [37].

Table 2 Values of the Sommer parameter r0/a and the lattice spacing
a at the three values of β. See Ref. [40] for more details

β a [fm] r0/a

1.90 0.0885(36) 5.31(8)

1.95 0.0815(30) 5.77(6)

2.10 0.0619(18) 7.60(8)

The corresponding lattice Dirac operator in the light sector
reads

Dtm
� = DW + mcr + iμ�γ5τ

3, (1)

with DW the Wilson Dirac operator, mcr the Wilson quark
mass tuned to its critical value, μ� the bare up/down quark
mass parameter and τ 3 the third Pauli matrix acting in flavour
space. The tuning of the Wilson quark mass to its critical
value is discussed in Ref. [29], where also the Dirac opera-
tor for the strange/charm sector can be found, which is not
relevant for the remainder of this paper. The relation of the
bare parameters μσ and μδ given in Table 1 are related to the
renormalised strange and charm quark masses as follows:

ms,c = 1

ZP
μσ ∓ 1

ZS
μδ .

The bare strange and charm quark masses are kept constant
for each β value. The renormalised strange quark mass values
differ from the physical one by up to 10%; see Refs. [29,30,
40] for details. In our chiral and continuum extrapolation
we treat the strange quark mass as constant in spite of this
deviation. In the gauge sector the Iwasaki action is used [41,
42].
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The biggest disadvantage of Wilson twisted mass fermions
at maximal twist is the breaking of isospin symmetry. As a
consequence, charged and neutral pions are not mass degen-
erate, with the splitting in the squared masses vanishing like
a2 towards the continuum limit. This pion mass splitting is
also about the only quantity where strong effects of isospin
splitting have been observed so far [43].

We are going to study the decay ρ0 → π+π− in a p-wave.
In nature, there is no mixing with two neutral pions possible.
Even if there is reduced isospin symmetry (only Iz is a good
quantum number) in the Wilson twisted mass formulation at
maximal twist, such mixing is still not possible due to C-
symmetry: ρ0 is C-odd, while π0π0 is C-even. Likewise,
non-p-wave symmetric combinations of π+π− are C-even,
while p-wave symmetric combinations of π+π− areC-even,
for instance

Ol=0,1 = π+(p1)π
−(p2) + (−1)lπ−(p1)π

+(p2)

C Ol=0,1 C−1 = π−(p1)π
+(p2) + (−1)lπ+(p1)π

−(p2)

= (−1)l Ol=0,1 ,

excluding also mixings with I = 2, Iz = 0 states. Moreover,
also a single π0 is C-even and cannot mix.

However, due to missing isospin symmetry, there are
fermionic disconnected contributions to the ρ0 lattice inter-
polating operators. These can be shown, like for the neutral
pion, to be purely of O(a2). Thus, we drop them from our
calculation, as was also done in Ref. [15]. Note that the neu-
tral to charged ρ-meson splitting was found to be negligible
[44].

As a smearing and contraction scheme we employ the
stochastic Laplacian Heaviside (sLapH) approach, described
in Ref. [45]. Details of our sLapH parameter choices can be
found in Refs. [32,33].

2.1 Scale setting

The scale setting for the ensembles used here has been per-
formed in Ref. [40] by extrapolating pseudo-scalar meson
masses and decay constants to the chiral and continuum lim-
its and using the physical values of Mπ and fπ as inputs. As
an intermediate scale the Sommer parameter r0/a has been
used. The values for the lattice spacings resulting from this
procedure can be found in Table 2 together with the values
of r0/a for each β value. The physical value of the Sommer
parameter was determined in Ref. [40] on the same ensem-
bles as the value

r0 = 0.474(11) fm . (2)

In this paper we are also going to use the Sommer parameter
as intermediate lattice scale. In addition to the physical value
for r0 given above we need the physical pion mass value as
input. Here, we use the value of Mπ in the isospin symmetric

limit [46] (consistent with that used in Ref. [40])

Mπ+ = 134.8(3) MeV (3)

corrected for QED and strong isospin contributions. The val-
ues of r0/a were not determined by us on the identical set of
gauge configurations. Therefore, we use the values given in
Table 2 with re-sampling (parametric bootstrap). Mπ and its
error are treated in the same way.

In Appendix B we discuss how we include uncertainties
on r0/a, Mπ+ and other input. We remark that at fixed β value
there is in principle correlation between r0/a and all other
observables. However, we cannot take these correlations into
account, because r0/a was not determined on the identical
gauge configurations. However, we measured this correlation
to more precisely estimated quantities like aMπ previously
and found the correlation to be negligible.

3 Methods

In this section we summarise the methodology we applied to
extract our results.

3.1 Scattering in finite volume

As is well known, the extraction of scattering properties from
lattice QCD in Euclidean space-time and a finite volume
requires the application of the so-called Lüscher method
[5,6]. It allows one to relate finite volume induced energy
shifts to infinite volume scattering properties of n-particle
systems in the continuum. The formalism is based on the
following determinant equation:

det
(
Mlm,l ′m′(k) − δll ′δmm′ cot(δl)

) = 0 , (4)

where Mlm,l ′m′ is an analytically known matrix function of
the lattice scattering momentum k; see below. δl is the phase
shift of the lth partial wave and the determinant acts in angular
momentum space. In the case of pion–pion scattering the
lattice scattering momentum k is related to a given energy
value ECM in the centre-of-mass (CM) frame and the pion
mass Mπ via

k2 = E2
CM

4
− M2

π . (5)

Given the scattering momentum on the lattice, Eq. (4) thus
yields δl . In order to map out the dependence of δl on ECM,
as many values of ECM as possible must be extracted from a
lattice calculation.

This is most conveniently done by using several CM
momenta, as first proposed in Ref. [14]. For given CM
momentum pcm, the relativistic energy reads

WL =
√
p2

cm + E2
CM (6)
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where pcm is, due to the finite volume, quantised as

pcm = 2π

L
· d , d ∈ Z

3 .

We classify the momentum sectors by |d|2 and use all allowed
lattice momenta in each sector up to d2 = 4. We denote the
set of equivalent momenta as

{ d } ≡ { z ∈ Z
3, z2 = d2 } .

By applying a corresponding Lorentz boost,

γ = WL

ECM
,

we can compute ECM for given WL and pcm. Adopting the
notation of Refs. [16,47], it remains to give details for the
matrix M from Eq. (4). Its matrix elements are given by

Mlm,l ′m′ = (−1)l
l+l ′∑

j=|l−l ′|

j∑

s=− j

√
2 j + 1 i jw jsClm, js,l ′m′ ,

(7)

with the convenient notation

w js = Z js(1, q2)

π3/2
√

2 j + 1γ q j+1
, q = kL

2π
. (8)

Clm, js,l ′m′ represent coefficients which can be expressed
using Wigner 3 j-symbols; see Ref. [16].

In a finite volume the symmetry group of rotoflections
(rotations and space inversions) is reduced from O(3) to a
finite subgroup.1 Because pcm is an invariant, the group is
different for each momentum sector.

In general, an irreducible representation restricted to a
subgroup does not remain irreducible. The decomposition of
the lowest partial waves is well known in the literature for all
momentum sectors in this work [16,47–52].

The prescription to decompose an eigenstate of the lth
partial wave is often referred to as “subduction”. To introduce
notation, assume the irrep Dl decomposes into a direct sum
of different irreps Γi each of which appears ni times such
that

Dl →
⊕

i

niΓi ,
∑

i

ni · dim(Γi ) = 2l + 1. (9)

Let Γ ∈ { Γi }, and label the basis vectors of Γ by α ∈
{ 1, . . . , dim(Γ ) }. The decomposition can be completely
described by a set of “subduction coefficients” denoted by

1 We treat parity explicitly instead of just looking at SO(3) because
parity will not be conserved in moving reference frames.

Table 3 Matrix elements for all momentum sectors d2 and irreps Γ

used in this work [47]

d2 Γ MΓ
11,11

0 T1u w0,0 − w2,0 − 3√
6
w2,−2 − 3√

6
· w2,2

1 A1 w0,0 + 2 · w2,0

1 E w0,0 − w2,0 + 3i√
6

· w2,−2 − 3i√
6

· w2,2

2 A1 w0,0 − w2,0 + 3i√
6

· w2,−2 − 3i√
6
i · w2,2

2 B1 w0,0 + 2 · w2,0

2 B2 w0,0 − w2,0 − 3i√
6

· w2,−2 + 3i√
6

· w2,2

3 A1 w0,0 + 2 · 1+i√
6

· w2,−1 − 2 · 1−i√
6

· w2,1 +
2i√

6
· w2,−2 − 2i√

6
· w2,2

3 E w0,0 − 1+i√
6

· w2,−1 + 1−i√
6

· w2,1 − i√
6

·
w2,−2 + i√

6
· w2,2

4 A1 w0,0 + 2 · w2,0

4 E w0,0 − w2,0 + 3i√
6

· w2,−2 − 3i√
6

· w2,2

s. Given a basis { | l,m〉 | −l ≤ m ≤ l }, the α-th basis vec-
tor of the n-th copy of Γ is given by

|Γ αln〉 =
∑

m

sΓ αn
lm |lm〉 . (10)

The derivation of subduction coefficients is discussed in
Appendix A. Applying the subduction to the matrix M from
Eq. (7) yields

MΓ
ln,l ′n′ = δΓ Γ ′δαα′

∑

mm′
sΓ αn
lm

∗
sΓ ′α′n′
l ′m′ Mlm,l ′m′ (11)

=
∑

mm′
sΓ αn
lm

∗
sΓ αn′
l ′m′ (−1)l (12)

×
l+l ′∑

j=|l−l ′|

j∑

s=− j

√
2 j + 1i jw jsClm, js,l ′m′ . (13)

The Lüscher formula Eq. (4) remains formally unchanged
except for the space it acts in. In the following, we will neglect
all partial waves apart from the p-wave. In this case ni = 1
for all i and Eq. (4) simplifies to

δ1 = arccotMΓ
11,11 , (14)

The contributions of higher odd partial waves have been anal-
ysed and found to be negligible [21,25]. While twisted mass
breaks parity and thus even partial waves may enter, the effect
is suppressed by O(a2) and also neglected here.

In Table 3 we list the explicit expressions for MΓ
11,11 used

in this work.
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3.2 Extraction of energy levels

In order to be able to use Eq. (14), we need to extract inter-
acting energy levels for a given lattice irrep Γ as well as the
pion energy Eπ ( p). The latter is, as usual, determined from
the Euclidean time dependence of two-point functions

Cπ (t − t ′) = 〈Oπ+(t, p)† Oπ+(t ′, p)〉 (15)

with operators Oπ+(t, p) coupling to the charged pion state
with momentum p; see below. Note that in our formulation
we have Mπ+ = Mπ− . The spectral decomposition of Cπ

yields

Cπ (t) ∝
∑

n

(
e−Ent + e−En (T−t)

)
. (16)

In the limit of large Euclidean times only the ground states
survives and allows one to extract Eπ ( p) from its exponential
decay.

For irrep Γ we define a list of suitable operatorsOi
Γ (t, p),

i = 1, . . . , n, which project to irrep Γ for momentum p.
Because the eigenvalues of operators from the same momen-
tum sector and irrep are degenerate up to statistical fluctu-
ations, we compute the correlator matrix by averaging over
all moving frames connected by an allowed lattice rotation
and rows of the irrep

CΓ,d2(t − t ′) = 1

| { d } |
∑

p ∈ { d }

1

dim(Γ )

×
dim(Γ )∑

α=1

〈 Oα
Γ (t, p)† · Oα

Γ (t ′, p) 〉 ,

(17)

where we defined Oα
Γ = (Oα

Γ 1, . . . ,Oα
Γ n)

t . The correlator
matrix CΓ d2(t) is then analysed using the standard variational
method [53,54] yielding eigenvalues λi (t, t0) which, at large
enough t values, decay like

λi (t, t0) ∝ exp(−Wi (t − t0)) + exp(−Wi (T − t + t0)) ,

(18)

where we neglect thermal pollutions for the moment; see
Sect. 3.4. Here, T is the time extent of the lattice and Wi the
i th energy level to be extracted. t0 represents the reference
time at which the generalised eigenvalue problem (GEVP) is
seeded. The correction to Eq. (18) due to excited states reads
at fixed t0 value [54]

εi (t, t0) = O(e−ΔWi t ) . (19)

Here, ΔWi is the energy difference of Wi to the first state not
resolved by the correlation matrix. For a detailed discussion
see Ref. [55].

3.3 Operator construction

We start with interpolating operators for pions π± with def-
inite isospin |1,±1〉I :
Oπ+(x) = d̄(x)cαΓ π

αβu(x)cβ ,

Oπ−(x) = ū(x)cαΓ π
αβd(x)cβ ,

(20)

where u and d denote Dirac spinors for an up and down
quark, respectively. α, β denote spin and c colour indices,
and Γ π = iγ5.

For the ρ-meson, we have to construct operators projected
to I = 1. A single ρ0 can be interpolated by the canonical
anti symmetric combination of quarks with isospin |1, 0〉I :

Oρ(x) = 1√
2
(ū(x)cαΓ

ρ
αβu(x)cβ − d̄(x)cαΓ

ρ
αβd(x)cβ) . (21)

Γ ρ must ensure that Oρ transforms like J PC = 1−−, i.e.
Γ ρ ∈ {iγi , γ0γi }. From the operators for charged pions
Eq. (20) one can construct two-pion operators with I = 1 as
follows:

Oππ (t, x1, x2) = 1√
2

(Oπ+(t, x1)Oπ−(t, x2)

− Oπ−(t, x1)Oπ+(t, x2)) .

(22)

The projection of a given single particle operator O(t, x) to
momentum p is performed via

O(t, p) =
∑

x

O(t, x) eix p (23)

and likewise for two particle operators O(t, x1, x2) to
momenta p1, p2, respectively, yielding Oππ (t, p1 + p2).

The projection to a given lattice irrep Γ and basis vec-
tor α is performed via the so-called subduction procedure
described in Appendix A.

3.4 Thermal state pollution

Apart from excited state contaminations Eq. (19) there are
additional so-called thermal state pollutions, which are rele-
vant with finite time extent T , periodic boundary conditions
and in the presence of multi-particle states.

For the case of pion–pion systems with momenta p1,2, the
leading thermal pollution to a matrix element of the correlator
matrix CΓ α reads

εt (t, p1, p2) ∝ e−Eπ ( p1)T e−(Eπ ( p2)−Eπ ( p1))t

+ e−Eπ ( p2)T e−(Eπ ( p1)−Eπ ( p2))t .
(24)

For p1 = p2 this is a constant contribution and the time
dependence drops out. The thermal pollution εt vanishes for
T → ∞. However, at finite T it can become relevant for
t → T/2. There are, of course, further pollution terms which
are exponentially suppressed compared to the one quoted
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above. Let us now assume Eπ ( p2) > Eπ ( p1) and concen-
trate on the corresponding, exponentially decreasing term in
Eq. (24). This is sufficient because the signal to noise ratio in
the relevant correlator matrices is decreasing exponentially
with Euclidean time. Therefore, we will have to extract the
signal at relatively small t values where the second, expo-
nentially increasing term in εt is not yet relevant.

We can deal with this pollution term by applying the so-
called weighting and shifting procedure [56]. It amounts to
the following transformation of C:

C̃(t) = e−ΔE t
(
C(t)eΔE t − C(t + 1)eΔE (t+1)

)
, (25)

with ΔE = Eπ ( p2)−Eπ ( p1). It is easy to see that this trans-
formation leaves the leading, physical exponential depen-
dence unchanged, while the thermal pollution is removed.
As an input for the transformation Eq. (25) we use Eπ ( p)
determined from single charged pion two point functions at
zero momentum combined with the continuum dispersion
relation Eq. (6).

We remark here that we have investigated thermal pollu-
tions in some detail in Ref. [34]. However, the corresponding
findings are not applicable here, because the signal does not
extend to large enough t values.

3.5 Phase-shift curves

Once the energy levels have been determined for all the irreps
mentioned above, the phase shift δ1 is to be determined from
Eq. (14). This requires the evaluation of the Lüscher zeta
function Zlm(1, q2) in wlm . Z has poles at q2-values corre-
sponding to the free, non-interacting two particle energies.
The larger the spatial extent L of the lattice, the closer are
the interacting energy levels to these poles.

This structure makes the error estimate for δ1 difficult
in cases where the statistical uncertainty of the interacting
energy levels is not small enough: when an energy level is
compatible with a pole of the Z-function within errors, a
proper estimate of the uncertainty of δ1 becomes impossible.
However, also when this is not the case, such a situation
can still be and actually is triggered in some cases during
a bootstrap analysis. Since bootstrap replicates are sampled
uniformly random with replacement, it is not unlikely to hit a
pole of the Z-function, even if the pole is two or three sigma
away from the actual energy level.

To circumvent this problem, we use instead of the boot-
strap the jack-knife procedure, which can be understood as
a linear approximation to the bootstrap. The standard devi-
ation over jack-knife replicates is per construction a factor
of

√
N − 1 smaller than the one over bootstrap replicates,

where N is the sample size.
It is clear that using the jack-knife procedure introduces

additional uncertainties due to the linearisation, in partic-

ular in the vicinity of a singularity of the Z-function. We
have compared the jack-knife and bootstrap procedure for
all cases, where bootstrap did not show the aforementioned
problem. For all these cases we found excellent agreement
for the error estimate between the two methods. Thus, we
conclude that the systematic error introduced by jack-knife
is likely not significant, even though we cannot make this
statement definite.

With this procedure we then determine δ1 as a function
of ECM using Eq. (14). The next step is to determine the ρ-
meson mass Mρ and width Γρ from these phase-shift points.
For this purpose we use a relativistic Breit–Wigner functional
form,

tan δ1 = g2
ρππ

6π

p3(ECM)

ECM · (M2
ρ − E2

CM)
,

p(ECM) =
√
E2

CM/4 − M2
π ,

(26)

which we fit to our data. Here, gρππ is the ρ to ππ coupling
constant. The width is related to gρππ through Mρ via

Γρ = 2

3

g2
ρππ

4π

p3(Mρ)

M2
ρ

. (27)

Equation (26) allows one to extract the mass and width from
the phase-shift data at a given pion mass. We remark that
Eq. (26) contains several approximations. The resonance
must be isolated and narrow. Additionally tan δ1 has a pole
at ECM = Mρ which was rewritten as a rational function
where the denominator is a first-order polynomial in k2. For
Mρ = 775 MeV the predicted width is Γρ � 130 MeV [57].
Additional modifications such as barrier terms, have been
observed to slightly improve fit quality, but had no signifi-
cant effect on the final results [21,22,26].

Since Nconf is different on all our ensembles, the jack-knife
procedure is not easily applied in such a chain of analyses and
we take the jack-knife errors as an input to a parametric boot-
strap procedure. Here we generate the parametric bootstrap
replicates such as to have the same correlation between ECM,
Mπ and δ1 as the jack-knife replicates. Then we fit Eq. (26)
to our data for ECM, δ1 and Mπ with two free parameters
gρππ and Mρ .

3.6 Pion mass dependence

In Ref. [58] the pion mass dependence of the ρ-meson mass
has been computed using effective field theory with infrared
regularisation. Up to O(M3

π ) plus the non-analytic term of
order M4

π , the dependence reads

Mρ(M2
π ) = M0

ρ + c1M
2
π + c2M

3
π + c3M

4
π ln

(
M2

π

M2
ρ

)

+O(M4
π ) . (28)
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To this order the formula contains four unknown parameters,
the ρ mass in the chiral limit M0

ρ and the parameters c1, c2

and c3. Using this mass dependence of Mρ and the KSFR
relation [59,60], we can try to relate gρππ to Mπ up to order
M3

π using Eq. (28) and the SU(2) chiral perturbation theory
formula for fπ [61]

gρππ (M2
π ) ≈ Mρ

fπ

≈ 1

f0

[

M0
ρ + M2

π

(

c1 + 2

16π2 f 2
0

(log ξ� − �̄4 − �π )

)

+c2M
3
π

]

+ O(M4
π ) .

(29)

Here, fπ is the pion decay constant, f0 its value in the chiral
limit and the parameters M0

ρ and ci are the ones from Eq. (28).
Note that we follow the convention with fπ ≈ 130 MeV [62].
In addition we have used the definitions

�π = log

(
Mπ+

4π f0

)2

, ξ� = M2
π

16π2 f 2
0

and the usual low energy constant �̄4. Values for f0 and �̄4

have been computed on the ensembles used here in Ref. [40]

f0 = 121.1(2) MeV , �̄4 = 4.7(1) .

We remark that the KSFR relation [59,60] gρππ ≈ Mρ/ fπ
is fulfilled in nature to very good approximation. However, it
is not clear at all whether it can be extended beyond leading
order in the pion mass.

In Refs. [63,64], the pion mass dependence of theρ-meson
mass and width has been calculated with the complex mass
renormalisation scheme from an effective field theory with
explicit contributions corresponding to the ω-meson. It is
based on the assumption of vector meson dominance and,
thus, model dependent; see also Ref. [65] for details on the
model. However, its advantage is that mass and width can
be extrapolated in a combined fit. The squared pole position
of the ρ resonance, Z = (

Mρ − i/2 Γρ

)2 has the following
pion mass dependence:

Z = Zχ + cχ M
2
π − g2

ωρπ

24π
Z 1/2

χ M3
π + O(M4

π ) , (30)

where Zχ is the pole position in the chiral limit and cχ , gωρπ

are coupling constants. Higher order corrections in Mπ are
known in principle, which also include logarithmic terms.
The non-analytic structure in Mρ is identical to the one of
Eq. (28).

In order to apply this formula to our lattice data, we re-
express it in units of the Sommer parameter r0

r2
0 Z = r2

0 Zχ + Cχ (r0Mπ )2

− g2
ωρπ

24πr2
0

(r2
0 Zχ )

1/2(r0Mπ )3 + pa2

r2
0

a2
(31)

and add an a2 term, which represents the leading lattice arte-
facts for the twisted mass formulation at maximal twist. pa2

is an unknown complex parameter.

4 Results

4.1 Pion dispersion relation

In order to extract the energy shift, we need the pion energy
not only at rest but also in moving frames. As mentioned
before, in order to reduce statistical uncertainties we are
going to use the relativistic continuum dispersion relation

W 2
π ( p) = M2

π + p2 (32)

to compute Wπ ( p) from the zero momentum pion mass
value. As a check for the validity of this approach we have
also computed Wπ ( p) from two-point correlation functions
with momentum.

In Fig. 1 we compare the measuredW 2
π ( p) with the predic-

tion of Eq. (32) with M2
π at zero momentum as input exem-

plarily for the A40.32 ensemble. Good agreement within
errors is observed up to d2 = 4. This makes us confident
that using the dispersion relation is safe.

4.2 Energy levels

One of the major uncertainties in our extraction of energy
levels of multi-particle correlation functions is caused by
thermal pollutions. For the case of two pions with maximal
isospin the onset of thermal pollutions in Euclidean time in
the correlators is clearly visible. However, due to the expo-
nential deterioration of the signal-to-noise ratio, this is not
the case for the correlation functions investigated here. This
manifests itself also in the fact that there is no clear difference
visible between principal correlators λ(t, t0) derived from
C(t, t0) or their weighted and shifted counterparts λ̃(t, t0)
derived from C̃(t, t0). Therefore, we perform the full analy-
sis with and without weighting and shifting and include the
difference as a systematic uncertainty in our error budget.

The other major uncertainty in extracting energy levels
from lattice correlation functions stems from the choice of
fit range. There have been approaches to making this choice
more objective by performing a weighted average over many
fit ranges, which works well for the case of single pions or
two pions with maximal isospin. In contrast, for the case in
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Fig. 1 Dispersion relation of the pion for ensemble A40.32. Left:
Wπ ( p)2 as a function of p2, both in lattice units. The solid line rep-
resents the continuum dispersion relation. Right: relative difference of
measured Wπ ( p)2 and the corresponding prediction of the continuum
dispersion relation

question here, the ρ channel, the weighted average turns out
not to be useful.

Therefore, our procedure is the following: we perform
the fitting to the principal correlator λ(t, t0) (and λ̃) by sur-
veying multiple fit ranges [tmin, tmax] and selecting a repre-
sentative one. We enforce a plateau length of at least four
points, which must be compatible within errors and have
relative errors below 50%. Additionally we require no sig-
nificant dependence on tmax as this would be a consequence

of residual thermal pollution. The dependence on tmin is very
pronounced when tmin is in a region, where excited states
are still relevant. We increase tmin until this dependence van-
ishes. A p value above 0.05 was preferred to ascertain that the
data in the chosen range are described by our fit. In the rare
cases where multiple fit ranges gave competing and equally
likely results, we chose an intermediate range. The influence
of varying t0 from 1 to the onset of the plateau was checked
and found to be negligible. Therefore, we chose t0 = 3 on
the coarser two and t0 = 4 on the finest lattice spacing, corre-
sponding to approximately 0.25 fm in physical units. Finally,
all other qualities being equal, we preferred larger tmax.

In Fig. 2 we show an example for the fit range chosen for
ensemble A40.32 where d2 = 1 and irrep Γ = E without
weighting and shifting. In the left panel, we show the ratio
of principal correlator λ(t, t0) and the single exponential fit
model Cth(t, t0) = exp(−W (t − t0)). Compared to the effec-
tive mass, the ratio is more robust numerically. By definition
the central value is 1. In the right panel we show for illustra-
tion the result of the correlator fit as a red band along with
the effective mass

meff(t) = log
C(t)

C(t + 1)
.

As mentioned above, the effects of thermal states are not
visible here. The energy level was determined as aW =
0.4412(26).

In Fig. 3 we show the same plots but this time with weight-
ing and shifting. The size of error bars is increased compared
to without weighting and shifting, which can be explained by
the reduced correlation of neighbouring time slices. For very
large t , points are not depicted because they were compatible
with zero. For this reason, tmax was chosen smaller compared
to before. The fit model was modified as described in Eq. (25)
and the calculation of the effective mass in the right panel
was changed accordingly. The fit result increased by roughly
one standard deviation to aW = 0.4463(23). Whether this
results from the independent choice of a fit range or due to
not visible but barely significant thermal states remains hard
to decide. By including this difference as a systematic error
we are confident that we keep control of both major sources
of systematic uncertainties.

In Fig. 4 we show all energy levels aECM for all irreps
Γ and boosts d2 exemplary for ensemble A40.32. The red
circles are with weighting and shifting, the blue triangles
without. The two-kaon upper and two-pion lower thresholds
are indicated by the dashed horizontal lines. For all d2-value
and irrep combinations, apart from two, we have two energy
levels below the two-kaon inelastic threshold.

Comparing energy levels with and without thermal state
removal, we observe good agreement. Statistical uncertain-
ties are in general larger with weighting and shifting.
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Fig. 2 In the left panel we show λ(t, t0)/Cth(t, t0) as a function of t/a
for the ground state energy level in irrep E . The reference time for the
GEVP was set to t0/a = 3 and the ensemble is A40.32. The horizontal
line indicates the fit range. In the right panel we show the effective
mass as a function of t/a and the fitted energy value with error band for
reference

4.3 Phase-shift determination

In Fig. 5 we show the phase shift δ1 as a function of the
centre-of-mass energy aECM for ensemble A40.32. The two-
parameter fit of Eq. (26) to our data is shown as a solid
line with error band. Colours and symbols encode d2-values
and irreps Γ , respectively. Error bars for the data points are

0.90

0.95

1.00

1.05

1.10

10 15 20
t/a

λ
(t

,t
0
)/

C
th

(t
,t

0
)

0.35

0.40

0.45

0.50

0.55

10 15 20
t/a

m
eff

(t
)

Fig. 3 The same as Fig. 2, but for weighted and shifted λ̃

slanted: x- and y-errors are added vectorially, i.e. the length
of the slanted error bars is the sum of x- and y-error added
in quadrature. Positive or negative slope of the slanted error
bar indicates positive or negative correlation between x- and
y-data. From Fig. 5 one can, hence, deduce that δ1 is neg-
atively correlated with aECM. Note that for determining δ1

also aMπ is needed. Here we use the finite volume estimate
as argued in Ref. [10].

One also reads off from Fig. 5 that our fit describes the
data particularly well in the region where δ1 passes through
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Fig. 4 Example of all energy
levels in lattice units for
ensemble A40.32 for irrep Γ

and pcm labeled by d2. The
two-kaon, two-pion and
four-pion thresholds are
indicated by the dashed
horizontal lines. The shorter
solid lines indicate the
non-interacting energy levels in
each irrep. The two colours and
symbols distinguish the estimate
of ECM with and without
thermal state removal
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Fig. 5 Phase shift δ1 as a
function of ECM in lattice units
for ensemble A40.32. The solid
line with error band represents
the fit result of Eq. (26) to all the
data w/ thermal state removal.
Colours encode the different
d2-values, while symbols
distinguish the irreps
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π/2. Larger deviations can be observed for larger values of
δ1, which significantly increase the χ2 values.

We have performed a list of variations of the fit to the
phase-shift data: (a) the fits are being performed with and
without (w and w/o) thermal state removal; (b) we have
performed fits by removing all points with d2 > k with
k = 3, 2, 1. While (b) merely influences the statistical uncer-
tainty, (a) leads to up to 4 standard-deviation differences in
the fit parameters, in particular in Mρ . However, it is not clear
whether approaches with or without thermal state removal
are systematically cleaner: in the former case we might be
plagued with thermal state pollutions, while in the latter case
the fit range might be chosen incorrectly due to noise.

Therefore, we decided to use the weighted mean over
results with and without thermal state removal. In addition
we include the difference ΔQY between the weighted mean
and with or without thermal state removal into the error by

rescaling the bootstrap distribution with a factor [34]

s =
√

(Δx)2 + ∑
Y (ΔQY )2

(Δx)2 . (33)

Here, Δx is the statistical uncertainty of the weighted mean
and Y ∈ {w/o, w/}.

All results for Mρ and gρππ determined by this proce-
dure with and without thermal state removal are compiled in
Table 4. The width Γρ computed via Eq. (27) is tabulated in
Table 5. In the latter table we also give the reduced χ2 values
of the Breit–Wigner fits and the values for the (charged) pion
mass in lattice units aMπ .

We have two groups of ensembles with all identical param-
eters apart from the volume. These are ensembles A40.24 and
A40.32 as well as B35.32 and B35.48, which we can use to
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Table 4 ρ mass aMρ and coupling gρππ for all ensembles with and without thermal state removal and the weighted average including the systematic
uncertainty as explained in the text

Ensemble aMw/o
ρ aMw/

ρ aMav
ρ gw/o

ρππ gw/
ρππ gav

ρππ

A30.32 0.3906(11) 0.3968(15) 0.3929(32) 6.0(2) 5.8(2) 6.0(2)

A40.24 0.4010(15) 0.4084(14) 0.4051(38) 5.7(1) 4.9(2) 5.4(4)

A40.32 0.3957(12) 0.3971(13) 0.3964(11) 5.7(1) 5.5(2) 5.6(1)

A60.24 0.4134(12) 0.4170(12) 0.4153(20) 5.4(1) 5.4(1) 5.4(1)

A80.24 0.4265(11) 0.4314(14) 0.4282(26) 5.3(1) 5.0(3) 5.2(2)

A100.24 0.4512(11) 0.4521(12) 0.4516(09) 4.7(2) 5.0(2) 4.9(2)

B25.32 0.3527(30) 0.3608(40) 0.3556(47) 6.3(3) 5.9(6) 6.2(4)

B35.32 0.3554(17) 0.3582(17) 0.3568(18) 6.3(2) 5.4(3) 6.0(5)

B35.48 0.3617(15) 0.3609(26) 0.3615(13) 5.8(2) 6.6(5) 6.0(4)

B55.32 0.3709(09) 0.3739(09) 0.3722(16) 5.6(1) 6.1(1) 5.8(3)

D15.48 0.2751(35) – 0.2751(35) 6.5(7) – 6.5(7)

D30.48 0.2747(16) 0.2926(22) 0.2811(91) 5.3(4) 5.1(5) 5.2(3)

D45.32 0.2866(09) 0.2948(14) 0.2890(42) 5.8(2) 4.6(5) 5.6(6)

Table 5 We giveaMπ , the finite size correction factor KMπ , the ρ width
aΓρ computed from aMρ and gρππ using Eq. (27) with and without
thermal state removal, and the weighted average as explained in the text.

In addition we give the reduced χ2 values of the corresponding fits to
the phase-shift data

Ensemble aMπ KMπ aΓ
w/o
ρ aΓ

w/
ρ aΓ av

ρ χ2
w/o χ2

w/

A30.32 0.12392(13) 1.0081(52) 0.0435(23) 0.0427(30) 0.0432(19) 2.66 2.79

A40.24 0.14154(12) 1.0206(95) 0.0312(14) 0.0243(15) 0.0279(36) 1.77 1.43

A40.32 0.14429(20) 1.0039(28) 0.0287(15) 0.0271(18) 0.0280(14) 1.81 1.49

A60.24 0.17314(19) 1.0099(49) 0.0133(07) 0.0139(07) 0.0136(06) 2.53 1.11

A80.24 0.19909(17) 1.0057(29) 0.0036(03) 0.0040(05) 0.0037(03) 1.72 0.54

A100.24 0.22236(23) 1.0037(19) 0.0003(01) 0.0004(01) 0.0004(01) 0.41 8.14

B25.32 0.10850(32) 1.0136(60) 0.0454(50) 0.0427(89) 0.0447(46) 1.05 0.56

B35.32 0.12380(10) 1.0069(32) 0.0340(20) 0.0260(26) 0.0309(43) 0.97 0.90

B35.48 0.12486(14) – 0.0316(24) 0.0397(56) 0.0328(46) 1.35 0.88

B55.32 0.15551(12) 1.0027(14) 0.0123(05) 0.0156(07) 0.0136(17) 1.30 0.93

D15.48 0.07067(15) 1.0081(22) 0.0491(114) – 0.0491(114) 0.68 –

D30.48 0.09754(14) 1.0021(07) 0.0179(25) 0.0206(40) 0.0187(25) 1.03 2.79

D45.32 0.12046(19) 1.0047(14) 0.0102(06) 0.0079(15) 0.0098(13) 1.17 0.93

investigate residual finite volume effects in our results for
Mρ and Γρ .

In Fig. 6 we compare in the left panel the phase-shift
points for A40.24 (blue) with the ones for A40.32 (red), in the
right panel B35.48 (red) with B35.32 (blue). Even though the
Breit–Wigner fits happen to result in slightly different values
for the resonance parameters, deviations are below the 2σ

level and do not show a systematic ordering with volume;
see Tables 4 and 5.

Thus, the weighted average with error including the sys-
tematic uncertainty from thermal state removal should also
safely include residual effects from finite volume.

There are a few ensembles where the Breit–Wigner type
fits to the phase-shift points are problematic. On the one hand
this is the case for ensemble with the heaviest pion mass
A100.24. The width approaches zero, which leaves the fits
little freedom; a fact reflected by the untrustworthy χ2.

On the other hand, unfortunately the fit on D15.48, our
most chiral ensemble, is difficult, however, for different rea-
sons. For D15.48 statistical uncertainties on the energy levels
are quite large. As a consequence, the Breit–Wigner fit for the
case w/ thermal state removal is not converging. The fit for
the case without thermal state removal gives large uncertain-
ties. Combined with the rather low lying inelastic threshold
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Fig. 6 We show the phase shift δ1 as a function of ECM in lattice units.
Left we compare A40.24 (blue) with A40.32 (red) and right B35.48
(red) with B35.32 (blue). The lines with error bars represent the corre-
sponding fits with Eq. (26) to the data

at 2MK , we do not consider this ensemble as trustworthy for
this calculation.

4.4 Chiral extrapolation

We first consider Mρ and gρππ . In the left panel of Fig. 7
we show r0Mav

ρ , in the right one gav
ρππ , both as a function

of (r0Mπ )2. Note that the error on r0/a is not included in
the plot, because it is 100% correlated for all data points
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Fig. 7 In the left panel we show r0Mav
ρ as a function of (r0Mπ )2. Open

symbols are not included in the fit. In the right panel gav
ρππ is shown

also as a function of (r0Mπ )2. The lines with error bands represent
independent fits to the data

of the same β value. Colours and symbols encode the three
lattice spacing values. The black diamonds represent the cor-
responding experimental values. The first observation is that
lattice artefacts are not resolvable given our current level of
statistical uncertainty. Overall, Mρ appears to show a rather
linear dependence on M2

π , a bit less so gρππ . The values for
aMπ can be found in Table 5. For the following extrapola-
tions we correct aMπ for finite size effects by applying a
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correction factor KMπ computed in Ref. [40], which can also
be found in Table 5.

Next we have tried to fit the pion mass dependence of Mav
ρ

and gav
ρππ combining Eqs. (28) and (29) up to the order M3

π .
However, such a fit did not result in convincing results. Even
though the chiral log in gav

ρππ stemming from fπ somewhat
compensates the term c1M2

π , a satisfactory description of the
data for both the mass and the coupling could not be achieved.

Therefore, we show in Fig. 7 independent linear extrap-
olations for both Mρ and gρππ in M2

π . As visible, the two
extrapolations overestimate both the ρ mass and the coupling
at the physical point compared to experiment.

We now turn to combined fits of mass and width using
Eq. (31) for the complex valued variable Z . As described
in Sect. 3, we extrapolate Mρ and Γρ to the physical point
combined in r2

0 Z = r2
0 (Mρ +iΓρ/2)2. As we also mentioned

already, the error analysis for this fit is performed using the
parametric bootstrap procedure maintaining the correlation
among Mρ , Γρ and Mπ . We use 1500 bootstrap samples and
the values for r0/a for the different lattice spacings were
resampled from the values compiled in Table 2.

The actual fit function reads

a2Z = p−2
r0/a

(
(p1 + i p2) + p3

(
pr0/aaMπ

)2

− p4
√
p1 + i p2

(
pr0/aaMπ

)3

+(p5 + i p6) p−2
r0/a

)
.

(34)

The fit parameters are the following: p1 and p2 represent
the real and imaginary parts of r2

0 Zχ and p3 represents Cχ ,
furthermore p4 ≡ g2

ωρπ/(24πr2
0 ) and p5 and p6 parametrise

the real and imaginary part of the a2 lattice artefacts. pr0/a is
one fit parameter per lattice spacing value for r0/a accompa-
nied by a corresponding prior Pr0/a . Thus, we have in total
6 real-valued free fit parameters.

In the fit we include only the ensembles with the largest
volume per pion mass value, i.e. A40.24 and B35.32 are not
included in the fit. We do not include ensemble D15.48 in the
fit, for reasons mentioned above. Moreover, we include only
data points with Mπ ≤ 420 MeV, which excludes ensembles
A80.24 and A100.24.

The best fit parameters can be found in Table 6 together
with the reduced χ2 value. We give the best fit parameters
for fits with and without lattice artefacts included. Clearly, p5

and p6, which parametrise the a2 effects in Z are compatible
with zero. Also, the remaining parameters do not change
significantly with and without a2 artefact included in the fit.

The χ2 values for these fits are all a bit too large, indicating
a tension in the data in particular between Mρ and Γρ . It
basically is a consequence of the invisible curvature in the
data for Mρ .

The result of the fit can be seen in Fig. 8, where we show in
the left panel r0Mρ and in the right panel r0Γρ both as func-

Table 6 Best fit parameters of the combined chiral fit in terms of Z
with and without lattice artefacts included in the fit

Parameter incl. a2 excl. a2

p1 3.14(28) 2.99(07)

p2 −0.631(61) −0.592(26)

p3 4.75(24) 4.79(08)

p4 0.936(80) 0.991(34)

p5 −5(10) –

p6 1.3(1.8) –

χ2/d.o.f. 2.35 2.00

tions of (r0Mπ )2. Note that the error on r0/a is not included
in the plot, because it is 100% correlated for all data points
of the same β value. The best fit to the data is indicated
by the solid lines with error bands. Data points with open
symbols are excluded from the fit. The fit range is indicated
by the extent of the solid lines. The experimental values are
included in both plots as black diamonds, but not included in
the fit.

Our final result for Mρ and Γρ taken from the fit without
a a2 effects included reads

Mρ = 769(19) MeV , Γρ = 129(7) MeV , (35)

corresponding to

gρππ = 5.5(1) . (36)

In addition we find

M0
ρ = 723(20) MeV ,

Γ 0
ρ = 142(7) MeV ,

|gωρπ | = 20.8(7) GeV−1

(37)

from our chiral and continuum fits. The correlation coeffi-
cients for the fit parameters can be found in Appendix C.

5 Discussion

In the previous section we have performed different chiral
and continuum extrapolations for our data. First, there are
independent linear fits of Mρ and gρππ as a function of M2

π .
Second, we have performed combined fits in terms of Z as
a function of Mπ including terms up to order M3

π with and
without including lattice artefacts. While the two linear fits
certainly provide a good description of the data for Mρ and
gρππ separately, we decided to quote the results from the
combined fit as our final result. The reason is that in the cor-
responding effective field theory the complex pole is treated
consistently, which we consider as theoretically more sound.

The final result for Mρ and Γρ we quote in Eq. (35) can
be compared to the corresponding PDG values [62] for mass
and full width
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Fig. 8 Chiral extrapolation of Mρ and Γρ as a function of M2
π , all in

units of the Sommer parameter r0. The lattice spacing is colour and
symbol coded, the experimental values are shown as black diamonds.
The lines with error bands represent combined fits according to Eq. (34)
to the data of Mρ andΓρ . Data points with open symbols are not included
in the fit

Mexp
ρ = 775.26(25) MeV , Γ

exp
ρ = 149.1(8) MeV .

Note that these also correspond to Breit–Wigner parameters
determined experimentally from e+e− reactions. The devi-
ation to other reactions can be of the order of 10 MeV. We
observe rather good agreement for Mρ , while our value for
the width is slightly too low. This is also visible in Fig. 9,
where we plot the experimental phase shifts from Ref. [2]

and compare them to the phase-shift curve we obtain using
the final values from Eq. (35) and then again assuming the
Breit–Wigner form from Eq. (26).

However, this good agreement should be taken with cau-
tion. First of all our extrapolation form for Mρ and Γρ is not
model independent. This is in particular important, because
the curvature needed to obtain an Mρ -value close to the exper-
imental one comes from constrains due to Γρ . This, as dis-
cussed earlier, manifests itself also in a bit too large χ2 values
in the chiral and continuum fits. Moreover, the ensemble with
the lightest pion mass included in the fit is B35.48 with a pion
mass of about 300 MeV. Thus, the extrapolation to the phys-
ical point is quite long. In addition we have assumed that we
can perform a Breit–Wigner type fit to all the phase-shift data,
which is an approximation. This might also be the reason for
the too low value of Γρ compared to experiment. We are
currently working on an alternative extrapolation using the
inverse amplitude method which might allow us to perform
the chiral extrapolation even more reliably [66–70]. Our fitted
value for gωρπ Eq. (37) is in the right ballpark, when com-
pared to the numbers given in Refs. [63,64], where 16 GeV−1

is quoted. From Refs. [3,71] one finds gωρπ = ±20.7 GeV−1

in very good agreement with our value.
Finally, our determinations of mass and width rest on the

assumption that all partial waves apart from � = 1 are negli-
gible. This assumption is supported by previous lattice inves-
tigations of the ρ meson, but has not been checked by us yet.

On the other hand, our results for Mρ and Γρ make a
combined extrapolation to the physical point and to the con-
tinuum limit feasible for the first time. However, since we
find lattice artefacts to be statistically insignificant, our final
result is based on a chiral extrapolation assuming no lattice
artefacts. We have different volumes available with otherwise
fixed parameters, which allow us to argue that residual finite
volume effects are not a dominant source of uncertainty in
our results.

In Fig. 10 we compare results for Mρ and gρππ from vari-
ous lattice Collaborations with Nf = 2+1 or Nf = 2+1+1
dynamical quark flavours. We observe that there are probably
lattice artefacts in some of the results for Mρ , in particular
in the results from Andersen et al. [27] and from the Hadron
Spectrum Collaboration [21]. For gρππ uncertainties are in
general larger and within these large uncertainties the agree-
ment among different lattice Collaborations is reasonable.

However, leaving aside lattice artefacts, one could be
tempted to conclude from Fig. 10 that Mρ is rather linear
in Mπ , very similar to what is observed for the nucleon mass
[72]. In fact one finds Mρ = 680 MeV + 0.6Mπ to a good
approximation by fitting only the data by Fu and Wang [24]
together with our data, which represents yet another version
of the “ruler” plot. From an effective field theory point of
view this cannot be the correct pion mass dependence and
future results will hopefully shed light on this puzzle.
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Fig. 9 Comparison of
experimental phase-shift data
from Ref. [2] to the phase-shift
curve extracted from our final
results for Mρ and Γρ shown as
red solid line. For illustration
purposes we also show the
phase-shift curve in a world
with Mπ = 220 MeV as green
dashed line, with
Mπ = 305 MeV as blue
dot-dashed line and with
390 MeV as a purple
two-dashed line
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Fig. 10 Comparison of lattice
results for Mρ (left) and gρππ

(right) as a function of Mπ . We
compare with all available
results that had a dynamic
strange quark: Alexandrou et
al. [26], Andersen et al. [27], Fu
et al. [24], HadSpec [21,23],
PACS-CS [20] as well as the
experimental value [62]
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We can also compare to the results of Ref. [31], where Mρ

and gρππ have been determined on the same ETMC ensem-
bles we used, however, using the inverse Lüscher method
based only on the vector current based on a parametrisation of
the pion form factor. Their continuum extrapolated values for
Mρ and gρππ at the physical point are consistent with ours.

6 Summary

We have presented an investigation of the ρ-meson proper-
ties using lattice QCD with Nf = 2 + 1 + 1 Wilson twisted
mass quarks at maximal twist. With three values of the lat-
tice spacing and a range of pion mass values we could per-
form chiral and continuum extrapolations of ρ-meson mass
Mρ and width Γρ with better control than previously possi-
ble. The latter two quantities have been determined on our
ensembles using a Breit–Wigner type fit to phase-shift data
assuming that partial waves with � ≥ 3 are negligible.

The phase-shift curves have been determined applying
Lüscher’s method using moving frames up to d2 = 4 and all
available lattice irreducible representations. Our final result
reads

Mρ = 769(19) MeV ,

gρππ = 5.5(1) ,

Γρ = 129(7) MeV ,

which is determined from a combined continuum and chiral
extrapolation of Mρ and Γρ . Systematic errors from thermal
state pollutions, the chiral and the continuum extrapolation
should be covered by the error we quote. Mρ is very close to
its experimental value, the width is about two sigma too low.
The agreement of our data for Mρ with previously published
lattice results is satisfactory.

It is clear that more work is needed to better estimate
the width, which likely suffers from e.g. the use of a Breit–
Wigner type fit to the phase-shift data. Therefore, we are
currently working on using the inverse amplitude method to
directly describe the pion mass dependence of the phase-
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shift curves [70]; see also Ref. [73]. This should alleviate
systematic uncertainties in our current analysis.
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A Operator construction

One side effect of the restriction to finite volumes in a lat-
tice calculation is that the symmetry group of rotoflections
(rotations and space inversions) is reduced to a finite sub-
set. In Sects. 3.1 and 3.3, the consequences of this explicit
symmetry breaking were encapsulated in a set of subduction
coefficients. Here we illustrate our derivation of subduction
coefficients as well as the chosen conventions for a single
and two pions.

Let |l,m〉 be a basis vector in the spherical basis transform-
ing according to the angular momentum-l representation of
SO(3) and m denote the magnetic quantum number. For a
given rotation R and basis vectors |l,m〉, the representation
matrix elements are given by

Dl
m,m′(R) = 〈l,m|R̂|l,m′〉 , (38)

where R̂ denotes the action of R on the Hilbert space of wave
functions.

Let G be the (finite) symmetry group of the discretised
geometry. As already explained in Eq. (9), Dl is not neces-
sarily irreducible over G and it may decompose into multiple
irreducible representations Γ of G. Then

Table 7 Little groups and decomposition of angular momentum 1 for
all momentum sectors d2 used in this work. The groups are isomorphic
for each representative of a sector. Therefore, the direction of pcm is
arbitrary here

d2 LG( pcm) Γ

0 Oh T1u

1 C4v A1 ⊕ E

2 C2v A1 ⊕ B1 ⊕ B2

3 C3v A1 ⊕ E

4 C4v A1 ⊕ E

P̂Γ,l
αβ = dim(Γ )

|G|
∑

g∈G
DΓ (Rg)

∗
αβ R̂g (39)

defines a projector, where DΓ denote the irreducible repre-
sentation matrices and α, β ∈ {1, . . . , dim(Γ )} are arbitrary
but fixed. We refrain from discussing the modifications for
non-trivial multiplicities. We use the Schönflies notation and
follow the conventions for DΓ used in crystallography [84],
conveniently implemented in Maple [85].

At rest, the symmetry group is the octahedral group Oh.
Choosing a non-zero CM momentum pcm further reduces
the relevant symmetry group to the “little group”

LG( pcm) ≡ { g ∈ Oh, R̂g pcm = pcm } , (40)

which leaves pcm invariant. The relevant little groups are
listed in Table 7.

A.1 One-meson operator

Let Om†
l ( pcm) be an operator that creates a meson state

| pcm; l,m〉 with momentum pcm and total (integral) angu-
lar momentum l with projection m. By applying P̂Γ,l , this
operator is projected to an operator

Oα†
Γ ( pcm) =

∑

β

φβ

∑

m

φm P̂Γ,l
αβ Om†

l ( pcm)

=
∑

β

φβ

∑

m,m′
φm

dim(Γ )

|G|
×

∑

g∈LG( pcm)

DΓ (Rg)
∗
αβ Dl

m′,m(Rg)Om′†
l ( pcm) ,

(41)

which creates a single meson basis state | pcm;Γ, α〉 of
LG( pcm).

Here it becomes apparent, why α are called “rows”. The
row index of the matrix DΓ also labels the basis vectors of
Γ . Correspondingly we will refer to β as the “column” of the
representation. φm and φβ are phases which are chosen such
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Table 8 Momentum combinations p1 ⊗ p2 used in Eq. (43). We
only give one representative CM momentum pcm = 2πd/L for each
momentum sector. The other directions may be generated by a global

rotation. The momentum combinations depend on the irrep Γ because
not all combinations couple to all irreps

d Γ p1 ⊗ p2

(0, 0, 0) T1u (0, 0, 1) ⊗ (0, 0,−1), (1, 0, 1) ⊗ (−1, 0,−1)

(0, 0, 1) A1 (0, 0, 1) ⊗ (0, 0, 0), (0, 0, 2) ⊗ (0, 0,−1), (1, 0, 1) ⊗ (−1, 0, 0), (1, 1, 1) ⊗ (−1,−1, 0)

(0, 0, 1) E (0, 1, 1) ⊗ (0,−1, 0), (1, 1, 1) ⊗ (−1,−1, 0)

(1, 1, 0) A1 (1, 1, 0) ⊗ (0, 0, 0), (1, 1, 1) ⊗ (0, 0,−1), (1,−1, 0) ⊗ (0, 2, 0)

(1, 1, 0) B1 (1, 1, 1) ⊗ (0, 0,−1), (1, 0, 1) ⊗ (0, 1,−1)

(1, 1, 0) B2 (1, 0, 0) ⊗ (0, 1, 0), (1, 0, 1) ⊗ (0, 1,−1), (2, 0, 0) ⊗ (−1, 1, 0)

(1, 1, 1) A1 (1, 1, 1) ⊗ (0, 0, 0), (1, 0, 1) ⊗ (0, 1, 0), (2, 0, 0) ⊗ (−1, 1, 1)

(1, 1, 1) E (1, 0, 1) ⊗ (0, 1, 0), (1,−1, 1) ⊗ (0, 2, 0)

(0, 0, 2) A1 (0, 0, 2) ⊗ (0, 0, 0)

(0, 0, 2) E (0, 1, 1) ⊗ (0,−1, 1)

Table 9 Correlation coefficients of fit parameters corresponding to the chiral fit of Eq. (34) to our data

p1 p2 p3 p4 pr0/a(A) pr0/a(B) pr0/a(D)

p1 1.00 − 0.24 − 0.38 − 0.42 0.67 0.61 0.30

p2 − 0.24 1.00 − 0.61 − 0.35 − 0.37 − 0.36 −0.16

p3 − 0.38 − 0.61 1.00 0.66 0.01 0.07 − 0.07

p4 − 0.42 − 0.35 0.66 1.00 − 0.57 − 0.53 − 0.42

pr0/a(A) 0.67 − 0.37 0.01 − 0.57 1.00 0.87 0.50

pr0/a(B) 0.61 − 0.36 0.07 − 0.53 0.87 1.00 0.48

pr0/a(D) 0.30 − 0.16 − 0.07 − 0.42 0.50 0.48 1.00

that the set | pcm;Γ, α〉 become orthonormal. In the follow-
ing we suppress the dependence on β and φ. We denote the
coefficients with fixed phases by the “subduction coefficient”
sΓ
l and from Eq. (41) obtain the result

Oα†
Γ ( pcm) =

∑

m′
sΓ,α
l,m′ Om′†

l ( pcm) . (42)

Applying the creation operators on the left and right side to
a vacuum state yields Eq. (10) for the subduction of basis
states. Note that the projection only acts in the space of total
angular momentum. The linear momentum p is unaffected
by the procedure.

A.2 Two-pion operators

To subduce the two-pion operators with individual 3-
momenta p1, p2 and pcm = p1+ p2 into the irreducible rep-
resentations of the residual lattice rotation symmetry group
LG( pcm) we start from the product operator π+(x1) π−(x2).

Then our group projection formula reads [15]

Oππ
α†
Γ q( pcm) = dim (Γ )

|LG( pcm)|
×

∑

β

φβ

∑

g∈LG( pcm)

∑

x1,x2

× ei(x1·( 1
2 pcm+R̂gq)+x2·( 1

2 pcm−R̂gq))

× DΓ (Rg)
∗
αβ O†

π+(x1)O†
π−(x2) ,

(43)

where 2q = p1 − p2 and α = 1, . . . , dim (Γ ). The vec-
tor φ = (

φ1, . . . , φdim(Γ )

)
characterises again our choice of

phase and normalisation for the irreducible operator multi-
plet.

Two-pion operators in the same reference frame pcm but
with different relative momenta q �= q ′, which are related by
an element of LG( pcm), R̂gq = q′ for some g ∈ LG( pcm),
lead to linearly dependent operators under the projection
Eq. (43). Therefore, we only use certain momentum com-
binations p1 ⊗ p2. In Table 8 we list one representative com-
bination for each momentum sector. The two-pion operators
for unlisted moving frames p′

cm with | pcm| = | p′
cm| are con-

structed by a global rotation for which R̂g̃ pcm = p′
cm.
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The method we describe here can be understood as an
extension of the projection method of Ref. [86] for arbitrary
moving frames.

B Analysis details

In this appendix we give the details on our analysis to estimate
the extrapolated values for Mρ and Γρ starting from energy
levels aECM and aMπ .

On a per ensemble basis we use the various interacting
energy levels aECM together with the values of aMπ to deter-
mine phase-shift values δ1(ECM). For the reasons explained
above we use in this step the jack-knife procedure to esti-
mate the variance–covariance matrix for all aECM, δ1 and
Mπ using the standard jack-knife estimators. In particular,
the Lüscher function is evaluated on the jack-knife samples.

Since with jack-knife there are not necessarily identical
numbers of replicates for all ensembles, we now use para-
metric bootstrap to resample the distributions with 1500 boot-
strap replicates on each ensemble. With all the mean values
and the variance–covariance matrix as input we draw ran-
dom samples from a corresponding multi-variate Gaussian
distribution. The bootstrap thus generated fully reproduces
the input variance–covariance matrix.

Generating multi-variate Gaussian random variables Y
with a given symmetric, positive definite covariance matrix
C from independent standard normal random variables X can
be performed as follows:

Y = √
CX ⇒

Cov(Y,Y ) = 〈Y · Y t 〉 = √
C 〈X · Xt 〉√

C
t = C ,

since 〈X · Xt 〉 = 1.
In the next step the Breit–Wigner functional form is fitted

to the phase-shift data for each ensemble separately. Note
that we could have also performed these fits on the jack-
knife samples and resample afterwards. We actually did it
both ways and found full agreement.

The fit including errors on the x-axis and including priors
for fit parameters is performed as follows (see also Ref. [87]
for an implementation): let us assume the proposed functional
form of the model reads

y(x) = f (x, α1, . . . , αnα ;β1, . . . , βnβ ) ,

which, for simplicity, we assume to be a scalar function.
Assume further that we have nd data points y1, . . . , ynd at
x-values x1, . . . , xnd for all of which we have estimates ȳi
and x̄i . Moreover, we have estimates for the nα parameters αi

reading ᾱi . The remaining parameters β j are free fit param-
eters. Then we may define the following function for fixed

β = (β1, . . . , βnβ ):

F : Rn → R
n+nd , Y = F(X;β) ,

with n = nd +nα . The elements of F are defined as follows:

Fi (X, β) =
{
f (Xi , Xnd+1, . . . , Xn;β) 1 ≤ i ≤ nd ,

Xi−nd nd < i ≤ n + nd .

X ∈ R
n represents the concatenation of all the xi and all

parameters αi reading X = (x1, . . . , xnd , α1, . . . , αnα ). We
perform a similar concatenation for the data, i.e. ȳ ∈ R

n+nd

with ȳ = (ȳ1, . . . , ȳnd , x̄1, . . . , x̄nd , ᾱ1, . . . , ᾱnα ). Then one
has to minimise

χ2 = (ȳ − F(X;β)) · C−1 · (ȳ − F(X;β))t

over X and β with C = 〈Y · Y t 〉 the variance–covariance
matrix.C is conveniently replaced by its estimate C̄ obtained
from the corresponding jack-knife estimator. We use the
frozen variance–covariance matrix approximation, where C
is kept fixed during the resampling.

In our case the parameters αi correspond for instance to
r0/a at the differentβ values or Mπ+ used as input. Of course,
depending on the problem C and C̄ factorise into block diag-
onal form.

C Correlation coefficients

In Table 9 we compile the correlation coefficients of the chiral
fit without lattice artefacts included in the fit: the fit function
is thus Eq. (34) without the term proportional to (a/r0)

2. The
bare data can be made available upon request.
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