Skip to main content
Log in

Color transparency in \({{\bar{p}}} d \rightarrow \pi ^- \pi ^0 p\) reaction

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

We consider exclusive two-pion production in antiproton-deuteron interactions at the beam momenta around 10 GeV/c in the kinematics with large momentum transfer in the underlying hard process \({{\bar{p}}} n \rightarrow \pi ^- \pi ^0\). The calculations are performed taking into account the antiproton and pion soft rescattering on the spectator proton in the framework of the generalized eikonal approximation. We focus on the color transparency effect that is modeled by introducing the dependence of rescattering amplitudes on the relative position of the struck and spectator nucleons along the momentum of a fast particle. As a consequence of the interplay between the impulse approximation and rescattering amplitudes the nuclear transparency ratio reveals a pretty complicated behaviour as a function of the transverse momentum of the spectator proton and the relative azimuthal angle between the \(\pi ^-\)-meson and the proton. Color transparency significantly suppresses rescattering amplitudes which leads to substantial modifications of the nuclear transparency ratio moving it closer to the value obtained in the impulse approximation. By performing the Monte-Carlo analysis we determine that this effect can be studied at PANDA with a reasonable statistics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: All data generated during this study are available from the corresponding author on request.]

Notes

  1. In contrast to the real photon, the virtual one is allowed to be longitudinal, i.e. to have helicity equal to zero.

  2. Throughout this work we apply the Paris potential model [29] for the DWF.

  3. We always mean invariant amplitudes defined according to Ref. [33].

  4. Of course, this has a meaning only if a frame exists that approximately satisfies the both conditions simultaneously. If we require highly-energetic \({{\bar{p}}}\), then such a frame could be chosen, for example, as the c.m. frame of the antiproton and the deuteron.

  5. Remember that the exclusive large angle reactions for which a quark exchange in not allowed are strongly suppressed as compared to the ones for which the quark exchange is allowed [50].

References

  1. F.E. Low, Phys. Rev. D 12, 163 (1975)

    Article  ADS  Google Scholar 

  2. L. Frankfurt, G.A. Miller, M. Strikman, Phys. Lett. B 304, 1 (1993). arXiv:hep-ph/9305228 [hep-ph]

    Article  ADS  Google Scholar 

  3. B. Blaettel, G. Baym, L.L. Frankfurt, M. Strikman, Phys. Rev. Lett. 70, 896 (1993)

    Article  ADS  Google Scholar 

  4. L. Frankfurt, A. Radyushkin, M. Strikman, Phys. Rev. D 55, 98 (1997). arXiv:hep-ph/9610274 [hep-ph]

    Article  ADS  Google Scholar 

  5. E. M. Aitala et al. (E791), Phys. Rev. Lett. 86, 4773 (2001), arXiv:hep-ex/0010044 [hep-ex]

  6. G. Aad et al. (ATLAS), Phys. Lett. B 748, 392 (2015). arXiv:1412.4092 [hep-ex]

  7. S. Chatrchyan et al. (CMS), Eur. Phys. J. C 74, 2951 (2014). arXiv:1401.4433 [nucl-ex]

  8. A. Adare et al. (PHENIX), Phys. Rev. Lett. 116, 122301 (2016). arXiv:1509.04657 [nucl-ex]

  9. M. Alvioli, L. Frankfurt, D. Perepelitsa, M. Strikman, Phys. Rev. D 98, 071502 (2018). arXiv:1709.04993 [hep-ph]

    Article  ADS  Google Scholar 

  10. S. J. Brodsky, in Proceedings of the 13th International Symposium on Multiparticle Dynamics, ed. by W. Kittel, W. Metzger, A. Stergiou (World Scientific, Singapore, 1982), p. 963

  11. A. H. Mueller, in Proceedings of the 17th Rencontres de Moriond, Vol. I, ed. by J. Tran Thanh Van (Editions Frontieres, Gif-sur-Yvette, France, 1982), p. 13

  12. S.J. Brodsky, A.H. Mueller, Phys. Lett. B 206, 685 (1988)

    Article  ADS  Google Scholar 

  13. D. Dutta, K. Hafidi, M. Strikman, Prog. Part. Nucl. Phys. 69, 1 (2013)

    Article  ADS  Google Scholar 

  14. J.C. Collins, L. Frankfurt, M. Strikman, Phys. Rev. D 56, 2982 (1997)

    Article  ADS  Google Scholar 

  15. B. Clasie et al., Phys. Rev. Lett. 99, 242502 (2007)

    Article  ADS  Google Scholar 

  16. L. El Fassi et al. (CLAS), Phys. Lett. B 712, 326 (2012)

  17. A.S. Carroll et al., Phys. Rev. Lett. 61, 1698 (1988)

    Article  ADS  Google Scholar 

  18. I. Mardor et al., Phys. Rev. Lett. 81, 5085 (1998)

    Article  ADS  Google Scholar 

  19. A. Leksanov et al., Phys. Rev. Lett. 87, 212301 (2001). arXiv:hep-ex/0104039 [hep-ex]

    Article  ADS  Google Scholar 

  20. J. Aclander et al., Phys. Rev. C 70, 015208 (2004). arXiv:nucl-ex/0405025 [nucl-ex]

    Article  ADS  Google Scholar 

  21. S.J. Brodsky, G.F. de Teramond, Phys. Rev. Lett. 60, 1924 (1988)

    Article  ADS  Google Scholar 

  22. J.P. Ralston, B. Pire, Phys. Rev. Lett. 61, 1823 (1988)

    Article  ADS  Google Scholar 

  23. B. Van Overmeire, J. Ryckebusch, Phys. Lett. B 644, 304 (2007). arXiv:nucl-th/0608040 [nucl-th]

    Article  ADS  Google Scholar 

  24. S.J. Brodsky, G.R. Farrar, Phys. Rev. Lett. 31, 1153 (1973)

    Article  ADS  Google Scholar 

  25. V.A. Matveev, R.M. Muradian, A.N. Tavkhelidze, Lett. Nuovo Cim. 7, 719 (1973)

    Article  Google Scholar 

  26. C.E. Carlson, M. Chachkhunashvili, F. Myhrer, Phys. Rev. D 46, 2891 (1992)

    Article  ADS  Google Scholar 

  27. The PANDA Collaboration, M. F. M. Lutz, B. Pire, O. Scholten, R. Timmermans, arXiv:0903.3905 (2009)

  28. L.L. Frankfurt, E. Piasetzky, M.M. Sargsian, M.I. Strikman, Phys. Rev. C 56, 2752 (1997). arXiv:hep-ph/9607395 [hep-ph]

    Article  ADS  Google Scholar 

  29. M. Lacombe, B. Loiseau, R. Vinh Mau, J. Cote, P. Pires, R. de Tourreil, Phys. Lett. 101B, 139 (1981)

    Article  ADS  Google Scholar 

  30. J.G. Lee et al., Nucl. Phys. B 52, 292 (1973)

    Article  ADS  Google Scholar 

  31. W. D. Apel et al. (Serpukhov-CERN), Phys. Lett. 72B, 132 (1977), [Pisma Zh. Eksp. Teor. Fiz.26,659(1977)]

  32. D. Evans, K. Neat, C. Caso, U. Trevisan, P. Antich, G. Cecchet, S. Ratti, P. Daronian, A. Daudin, C. Lewin, Nuovo Cim. A 16, 299 (1973)

    Article  ADS  Google Scholar 

  33. V.B. Berestetskii, E.M. Lifshitz, L.P. Pitaevskii, Relativistic Quantum Theory (Pergamon Press, Oxford, 1971)

    Google Scholar 

  34. A.B. Larionov, A. Gillitzer, J. Haidenbauer, M. Strikman, Phys. Rev. C 98, 054611 (2018). arXiv:1807.05105 [nucl-th]

    Article  ADS  Google Scholar 

  35. L.L. Frankfurt, W.R. Greenberg, G.A. Miller, M.M. Sargsian, M.I. Strikman, Z. Phys. A 352, 97 (1995). arXiv:nucl-th/9501009 [nucl-th]

    Article  ADS  Google Scholar 

  36. L.L. Frankfurt, M.M. Sargsian, M.I. Strikman, Phys. Rev. C 56, 1124 (1997). arXiv:nucl-th/9603018 [nucl-th]

    Article  ADS  Google Scholar 

  37. M.M. Sargsian, Int. J. Mod. Phys. E 10, 405 (2001)

    Article  ADS  Google Scholar 

  38. A. B. Larionov, A. Gillitzer, M. Strikman, (2019) arXiv:1905.10419 [nucl-th]

  39. D. Varshalovich, A. Moskalev, V. Khersonskii, Quantum Theory of Angular Momentum (World Scientific, Singapore, 1988)

    Book  Google Scholar 

  40. G. Farrar, H. Liu, L. Frankfurt, M. Strikman, Phys. Rev. Lett. 61, 686 (1988)

    Article  ADS  Google Scholar 

  41. D. Dutta et al. (Jefferson Lab E940104), Phys. Rev. C68, 021001 (2003), arXiv:nuclex/0305005 [nucl-ex]

  42. A. Larson, G.A. Miller, M. Strikman, Phys. Rev. C 74, 018201 (2006)

    Article  ADS  Google Scholar 

  43. W. Cosyn, M.C. Martinez, J. Ryckebusch, Phys. Rev. C 77, 034602 (2008). arXiv:0710.4837 [nucl-th]

    Article  ADS  Google Scholar 

  44. L. Frankfurt, G.A. Miller, M. Strikman, Phys. Rev. C 78, 015208 (2008). arXiv:0803.4012 [nucl-th]

    Article  ADS  Google Scholar 

  45. K. Gallmeister, M. Kaskulov, U. Mosel, Phys. Rev. C 83, 015201 (2011). arXiv:1007.1141 [hep-ph]

    Article  ADS  Google Scholar 

  46. S. R. Amendolia et al. (NA7), Proceedings, 23RD International Conference on High Energy Physics, July 16-23, 1986, Berkeley, CA, Nucl. Phys. B, 277, 168 (1986)

  47. L. Montanet et al. (Particle Data Group), Phys. Rev. D 50, 1173 (1994)

  48. A.B. Larionov, M. Strikman, Phys. Lett. B 760, 753 (2016). arXiv:1606.00761 [hep-ph]

    Article  ADS  Google Scholar 

  49. M. Strikman, A. B. Larionov, in Workshop on High-Intensity Photon Sources (HIPS2017) Mini-Proceedings, 55–58 (2017)

  50. C. White et al., Phys. Rev. D 49, 58 (1994)

    Article  ADS  Google Scholar 

  51. A.B. Larionov, H. Lenske, Nucl. Phys. A 957, 450 (2017). arXiv:1609.03343 [nucl-th]

    Article  ADS  Google Scholar 

  52. C. Patrignani et al. (Particle Data Group), Chin. Phys. C 40, 100001 (2016)

  53. J.P. Burq et al., Nucl. Phys. B 217, 285 (1983)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank A. Gillitzer, J. Haidenbauer, J. Ritman, and M. M. Sargsian for illuminating discussions. The research of M.S. was supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics, under Award No. DE-FG02-93ER40771. The most of numerical calculations in the present work have been performed using the computational resources of the Frankfurt Center for Scientific Computing (FUCHS-CSC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. B. Larionov.

Additional information

Communicated by U.-G. Meißner

Appendices

Appendix A: elementary amplitudes

1.1 \({{\bar{p}}} n \rightarrow \pi ^- \pi ^0\)

For the \({{\bar{N}}} N \rightarrow \pi \pi \) annihilation amplitude we apply the nucleon and \(\Delta \) exchange model in a version described in Appendix C of Ref. [34]. The powers of the vertex form factors are chosen from the condition of the \(s \rightarrow \infty ,~t/s=\text{ const }\) asymptotic scaling law [24, 25]

$$\begin{aligned} \frac{d\sigma }{dt} = \frac{f(t/s)}{s^n},~~~n=\sum n_i - 2, \end{aligned}$$
(A1)

with \(n_i\) being the number of quarks in each incoming and outgoing hadron. This leads to the \(\pi N N\) and \(\pi N \Delta \) vertex form factors having powers of 2 and 5/2, respectively. The cutoff parameters \(\Lambda _{\pi NN}=2.0\) GeV and \(\Lambda _{\pi N\Delta }=1.8\) GeV are chosen to reproduce the shape of the t-dependence of the differential cross section \({{\bar{p}}} p \rightarrow \pi ^- \pi ^+\) at \(p_\mathrm{lab}=5\) GeV/c (see Fig. 14 in ref. [34]). The absolute value of that cross section at \(\Theta _\mathrm{c.m.}=90^\circ \) is accounted for by multiplying the invariant amplitude by the factor \(\sqrt{\Omega }\) with \(\Omega =0.008\) motivated by significant absorption in the incoming \({{\bar{N}}} N\) channel. It is clear that such a description of the elementary \({{\bar{N}}} N \rightarrow \pi \pi \) amplitude is pretty simple. However, we believe that it is good enough for our purposes to address reactions at \(p_\mathrm{lab} \sim \) 5–15 GeV/c. Figure 10 shows the t-dependence of the \({{\bar{p}}} n \rightarrow \pi ^- \pi ^0\) differential cross section \(d\sigma /dt\) at \(p_\mathrm{lab}=5\) GeV/c (a) and the s-dependence of the same cross section at \(\Theta _\mathrm{c.m.}=90^\circ \) (b). The nucleon exchange contributions dominate at \(\Theta _\mathrm{c.m.}=90^{\circ }\) while the \(\Delta \) exchanges are important at forward and backward scattering angles. The local minimum at \(s=6.77\) GeV\(^2\) (\(p_\mathrm{lab}=2.5\) GeV/c) is due to destructive interference of n and p exchanges. In the case if only neutron exchange is possible (\({{\bar{p}}} p \rightarrow \pi ^- \pi ^+\)) or the neutron and proton exchanges interfere constructively (\({{\bar{p}}} p \rightarrow \pi ^0 \pi ^0\)) the s-dependence is smooth.

Fig. 10
figure 10

Differential cross section \({{\bar{p}}} n \rightarrow \pi ^- \pi ^0\) as a function of \(-t\) at \(p_\mathrm{lab}=5\) GeV/c (a) and as a function of s at \(\Theta _\mathrm{c.m.}=90^\circ \) (b). In panel (a), the solid, dashed, dotted, dash-dotted and dash-double-dotted lines correspond to full cross section and to the partial contributions of the neutron, proton, \(\Delta ^0\) and \(\Delta ^+\) exchanges. In panel (b) the solid line shows the calculated full cross section while the dashed line – the power law fit of Eq. (A1) with \(n=8\)

1.2 \({{\bar{p}}} p \rightarrow {{\bar{p}}} p\)

The antiproton-proton elastic scattering amplitude at high energies and forward scattering angles can be conveniently parameterized by the expression

$$\begin{aligned} M_{{{\bar{p}}} p}(t)= 2 i p_\mathrm{lab} m_N \sigma _{{{\bar{p}}} p}^{\mathrm{tot}} (1-i\rho _{{{\bar{p}}} p}) \text{ e }^{B_{{{\bar{p}}} p}t/2}, \end{aligned}$$
(A2)

where the \(p_\mathrm{lab}\)-dependent parameterizations \(\sigma _{{{\bar{p}}} p}^{\mathrm{tot}}\) and \(B_{{{\bar{p}}} p}\) are described in ref. [51]. While the total cross section and the slope of momentum transfer dependence are well constrained by experiment, the data on \(\rho _{{{\bar{p}}} p}=\text{ Re }M_{{{\bar{p}}} p}(0)/\text{ Im }M_{{{\bar{p}}} p}(0)\) at \(p_\mathrm{lab}=5-15\) GeV/c are quite scarce and thus we rely here on the extrapolation of the Regge–Gribov fit [52] towards low beam momenta. Fortunately, the sensitivity of our results to \(\rho _{\bar{p} p}\) is quite weak.

1.3 \(\pi N \rightarrow \pi N\) elastic

Elastic scattering of charged pions on protons is thoroughly studied and the elastic amplitude can be thus parameterized in a usual way:

$$\begin{aligned} M_{\pi ^\pm p}(t)= 2 i p_\mathrm{lab} m_N \sigma _{\pi ^\pm p}^{\mathrm{tot}} (1-i\rho _{\pi ^\pm p}) \text{ e }^{B_{\pi ^\pm p}t/2}. \end{aligned}$$
(A3)

The \(p_\mathrm{lab}\)-dependent total \(\pi ^\pm p\) cross sections are well described by the CERN-HERA fit [47]. The ratios \(\rho _{\pi ^\pm p}=\text{ Re }M_{\pi ^\pm p}(0)/\text{ Im }M_{\pi ^\pm p}(0)\) are taken from the Regge–Gribov fit [52]. The parameterizations of the slope parameters \(B_{\pi ^\pm p}\) at \(|t|=0.2\) GeV\(^2\) are provided in ref. [53]. The amplitude of the \(\pi ^0 p\) elastic scattering can be calculated from the isospin relation:

$$\begin{aligned} M_{\pi ^0 p}(t)=\frac{1}{2}(M_{\pi ^- p}(t)+M_{\pi ^+ p}(t))~. \end{aligned}$$
(A4)

Appendix B: the differential cross section in the LC variables

The purpose of this Appendix is to derive Eq. (32). Let us consider the frame where the four-momentum of the \({{\bar{p}}} + d\) system is \({{{\mathcal {P}}}} = p_{{{\bar{p}}}} + p_d = ({{{\mathcal {P}}}}^0,\varvec{0},P)\) with \(P \rightarrow +\infty \). In that frame the four-momenta of the pions are \(k_i=(\omega _i,\varvec{k}_{it},{\tilde{\alpha }}_i P),~i=1,2\) and the four-momentum of the spectator is \(p_s=(E_s,\varvec{p}_{st},{\tilde{\alpha }}_s P)\). The particle energies can be written as

$$\begin{aligned} \omega _i= & {} {\tilde{\alpha }}_i P + \frac{m_{it}^2}{2{\tilde{\alpha }}_i P},~~~m_{it}^2=m_\pi ^2+\varvec{k}_{it}^2, \end{aligned}$$
(B1)
$$\begin{aligned} E_s= & {} {\tilde{\alpha }}_s P + \frac{m_{st}^2}{2{\tilde{\alpha }}_s P},~~~m_{st}^2=m_N^2+\varvec{p}_{st}^2, \end{aligned}$$
(B2)
$$\begin{aligned} {{{\mathcal {P}}}}^0= & {} P + \frac{{{{\mathcal {P}}}}^2}{2P}. \end{aligned}$$
(B3)

After simple algebra the invariant phase space volume element (28) can be rewritten in terms of the LC variables \({\tilde{\alpha }}_i\), \(i=1,2,s\) and the transverse momenta as follows:

$$\begin{aligned} d\Phi _3= & {} = 2\delta ({{{\mathcal {P}}}}^2 - \frac{m_{1t}^2}{{\tilde{\alpha }}_1} - \frac{m_{2t}^2}{{\tilde{\alpha }}_2} - \frac{m_{st}^2}{{\tilde{\alpha }}_s}) \nonumber \\&\times \delta ^{(2)}(\varvec{k}_{1t}+\varvec{k}_{2t}+\varvec{p}_{st}) \delta (1-{\tilde{\alpha }}_1-{\tilde{\alpha }}_2-{\tilde{\alpha }}_s)\nonumber \\&\times \frac{d^2k_{1t}d{\tilde{\alpha }}_1}{(2\pi )^32{\tilde{\alpha }}_1} \frac{d^2k_{2t}d{\tilde{\alpha }}_2}{(2\pi )^32{\tilde{\alpha }}_2} \frac{d^2p_{st}d{\tilde{\alpha }}_s}{(2\pi )^32{\tilde{\alpha }}_s}. \end{aligned}$$
(B4)

After successive integrations over \(d^2k_{2t}d{\tilde{\alpha }}_2\) and \(dk_{1t}\) the phase space volume (B4) becomes:

$$\begin{aligned} d\Phi _3 = \frac{2}{|\partial {{{\mathcal {F}}}}/\partial k_{1t}|} \frac{k_{1t}d\phi _1d{\tilde{\alpha }}_1}{(2\pi )^32{\tilde{\alpha }}_1} \frac{1}{(2\pi )^32{\tilde{\alpha }}_2} \frac{p_{st}dp_{st}d\phi _s d{\tilde{\alpha }}_s}{(2\pi )^32{\tilde{\alpha }}_s},\nonumber \\ \end{aligned}$$
(B5)

where

$$\begin{aligned} {{{\mathcal {F}}}} = {{{\mathcal {P}}}}^2 - \frac{m_{1t}^2}{{\tilde{\alpha }}_1} - \frac{m_{2t}^2}{{\tilde{\alpha }}_2} - \frac{m_{st}^2}{{\tilde{\alpha }}_s} \end{aligned}$$
(B6)

and, therefore,

$$\begin{aligned} \frac{\partial {{{\mathcal {F}}}}}{\partial k_{1t}}= & {} -\frac{\partial }{\partial k_{1t}}\left( \frac{m_{1t}^2}{{\tilde{\alpha }}_1} + \frac{m_{2t}^2}{{\tilde{\alpha }}_2}\right) \nonumber \\= & {} - 2(k_{1t}/{\tilde{\alpha }}_1+(k_{1t}+p_{st}\cos \phi )/{\tilde{\alpha }}_2)~. \end{aligned}$$
(B7)

For the non-polarized particles the differential cross section is invariant with respect to rotations about beam axis. Thus, we can integrate the cross section over \(d\phi _s\) keeping the relative azimuthal angle \(\phi \) of Eq. (33) fixed. This leads to the following expression for the four-differential cross section:

$$\begin{aligned} {\tilde{\alpha }}_s {\tilde{\alpha }}_1 \frac{d^4\sigma }{d{\tilde{\alpha }}_s\, d{\tilde{\alpha }}_1\, d\phi \, p_{s t} dp_{s t}} = \frac{\overline{|M|^2} k_{1t}}{16(2\pi )^4 p_\mathrm{lab} m_d |\partial {{{\mathcal {F}}}}/\partial k_{1t}| {\tilde{\alpha }}_2}.\nonumber \\ \end{aligned}$$
(B8)

By using the relations between the LC variables

$$\begin{aligned} \left| \frac{d{\tilde{\alpha }}_1}{{\tilde{\alpha }}_1}\right|= & {} \left| \frac{d\beta }{\beta }\right| = \left| \frac{ dk_1^z}{\omega _1}\right| ~, \end{aligned}$$
(B9)
$$\begin{aligned} \left| \frac{d{\tilde{\alpha }}_s}{{\tilde{\alpha }}_s}\right|= & {} \left| \frac{d\alpha _s}{\alpha _s}\right| = \left| \frac{dp_s^z}{E_s}\right| \end{aligned}$$
(B10)

we finally obtain Eq. (32) where \(\kappa _t=|\partial {{{\mathcal {F}}}}/\partial k_{1t}| {\tilde{\alpha }}_2\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Larionov, A.B., Strikman, M. Color transparency in \({{\bar{p}}} d \rightarrow \pi ^- \pi ^0 p\) reaction. Eur. Phys. J. A 56, 21 (2020). https://doi.org/10.1140/epja/s10050-020-00022-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-020-00022-1

Navigation