Skip to main content

Advertisement

Log in

Impurity effects of \(\Lambda \) hyperons on \(p_{\Lambda }\) orbitals

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

Based on the deformed Skyrme–Hartree–Fock (DSHF) approach, impurity effects of the \(\Lambda \) hyperons occupying \(p_{\Lambda }\) orbitals are studied systematically in this work. Properties of \(\Lambda \) and double-\(\Lambda \) hypernuclei with both even and odd numbers of nucleons, from light to heavy nuclear mass regions, are investigated. In our calculation, the Skyrme force, SkI4, is used for the NN interaction, while, for the \(N\Lambda \) interaction, two kinds of density-dependent forces are used, which are NSC89 and SLL4, respectively. In general, compared to observed binding energies, a Skyrme-type SLL4 interaction gives better predictions for p-shell region hypernuclei and heavy ones, while the microscopic NSC89 interaction is suitable for sd-shell hypernuclei for the \(s_{\Lambda }\) state and the \(p_{\Lambda }\) states. Through analysis of the density distributions and the energy curves of different configurations, we find that the \(\Lambda \) hyperons occupying the \(s_{\Lambda }\) orbital, \([000]1/2^{+}\), make the density of nucleons more concentrated at the center and reduce the deformation of the nuclear core for light hypernuclei. It is also found that the \(\Lambda \) hyperons occupying the two \(p_{\Lambda }\) orbitals \([110]1/2^{-}\) and \([101]3/2^{-}\) drive the shapes of nuclear cores toward the prolate side and the oblate side, respectively, which is caused by the different distributions of the \(\Lambda \) hyperons on these two orbitals. The B(E2) values extracted from the DSHF calculation also support such conclusions. However, for the heavy hypernuclei, hyperons located on both \(s_{\Lambda }\) and \(p_{\Lambda }\) make little change on the nuclear core due to the saturation of its density distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability Statement

This manuscript has associated data in a data repository. [Authors’ comment: All data generated during this study are contained in this published article.].

References

  1. M. Danysz, J. Pniewski, Philos. Mag. 44, 348 (1953)

    Article  Google Scholar 

  2. M. Danysz, J. Pniewski, Bull. Acad. Pol. Sci. III 1, 42 (1953)

    Google Scholar 

  3. O. Hashimoto, H. Tamura, Prog. Part. Nucl. Phys. 57, 564–653 (2006)

    Article  ADS  Google Scholar 

  4. A. Gal, E.V. Hungerford, D.J. Millener, Rev. Mod. Phys. 88, 035004 (2016)

    Article  ADS  Google Scholar 

  5. T. Motoba, H. Bando, K. Ikeda, Prog. Theor. Phys. 70, 189 (1983)

    Article  ADS  Google Scholar 

  6. E. Hiyama, M. Kamimura, K. Miyazaki, T. Motoba, Phys. Rev. C 59, 2351 (1999)

    Article  ADS  Google Scholar 

  7. H. Tamura, M. Ukai, T.O. Yamamoto, T. Koike, Nucl. Phys. A 881, 310–321 (2012)

    Article  ADS  Google Scholar 

  8. A. Gal, J.M. Soper, R.H. Dalitz, Ann. Phys. (N.Y.) 63, 53 (1971)

    Article  ADS  Google Scholar 

  9. A. Gal, J.M. Soper, R.H. Dalitz, Ann. Phys. (N.Y.) 72, 445 (1972)

    Article  ADS  Google Scholar 

  10. D.J. Millener, Nucl. Phys. A. 804, 84 (2008)

    Article  ADS  Google Scholar 

  11. D.J. Millener, Nucl. Phys. A 835, 11 (2010)

    Article  ADS  Google Scholar 

  12. H. Bando, M. Seki, Y. Shono, Prog. Theor. Phys. 66, 2118 (1981)

    Article  ADS  Google Scholar 

  13. E. Hiyama, M. Kamimura, T. Motoba, T. Yamada, Y. Yamamoto, Phys. Rev. Lett. 85, 270 (2000)

    Article  ADS  Google Scholar 

  14. E. Hiyama, M. Kamimura, Y. Yamamoto, T. Motoba, Phys. Rev. Lett. 104, 212502 (2010)

    Article  ADS  Google Scholar 

  15. H. Nemura, Y. Akaishi, Y. Suzuki, Phys. Rev. Lett. 89, 142504 (2002)

    Article  ADS  Google Scholar 

  16. R. Wirth et al., Phys. Rev. Lett. 113, 192502 (2014)

    Article  ADS  Google Scholar 

  17. D. Gazda, A. Gal, Phys. Rev. Lett. 116, 122501 (2016)

    Article  ADS  Google Scholar 

  18. R. Wirth, R. Roth, Phys. Rev. Lett. 117, 182501 (2016)

    Article  ADS  Google Scholar 

  19. M. Isaka, M. Kimura, A. Dote, A. Ohnishi, Phys. Rev. C. 83, 044323 (2011)

    Article  ADS  Google Scholar 

  20. M. Isaka, M. Kimura, A. Dote, A. Ohnishi, Phys. Rev. C. 83, 054304 (2011)

    Article  ADS  Google Scholar 

  21. M. Isaka, H. Homma, M. Kimura, A. Dote, A. Ohnishi, Phys. Rev. C 85, 034303 (2012)

    Article  ADS  Google Scholar 

  22. M. Isaka, M. Kimura, A. Dote, A. Ohnishi, Phys. Rev. C 87, 021304(R) (2013)

    Article  ADS  Google Scholar 

  23. M. Isaka, M. Kimura, Phys. Rev. C 92, 044326 (2015)

    Article  ADS  Google Scholar 

  24. M. Rayet, Nucl. Phys. A 367, 381–397 (1981)

    Article  ADS  Google Scholar 

  25. H.-J. Schulze, M. Baldo, U. Lombardo, J. Cugnon, A. Lejeune, Phys. Rev. C 57, 704 (1998)

    Article  ADS  Google Scholar 

  26. J. Cugnon, A. Lejeune, H.-J. Schulze, Phys. Rev. C 62, 064308 (2000)

    Article  ADS  Google Scholar 

  27. I. Vidana, A. Polls, A. Ramos, H.-J. Schulze, Phys. Rev. C 64, 044301 (2001)

    Article  ADS  Google Scholar 

  28. H.-J. Schulz, E. Hiyama, Phys. Rev. C 90, 047301 (2014)

    Article  ADS  Google Scholar 

  29. X.R. Zhou, H.-J. Schulz, H. Sagawa, C.X. Wu, E.G. Zhao, Phys. Rev. C 76, 034312 (2007)

    Article  ADS  Google Scholar 

  30. X.R. Zhou, A. Polls, H.-J. Schulze, I. Vidana, Phys. Rev. C 78, 054306 (2008)

    Article  ADS  Google Scholar 

  31. M.-T. Win, K. Hagino, T. Koike, Phys. Rev. C 83, 014301 (2011)

    Article  ADS  Google Scholar 

  32. M.-T. Win, K. Hagino, Phys. Rev. C 78, 054311 (2008)

    Article  ADS  Google Scholar 

  33. B.-N. Lu, E.-G. Zhao, S.-G. Zhou, Phys. Rev. C 84, 014328 (2011)

    Article  ADS  Google Scholar 

  34. B.-N. Lu, E. Hiyama, H. Sagawa, S.-G. Zhou, Phys. Rev. C 89, 044307 (2014)

    Article  ADS  Google Scholar 

  35. R.X. Xu, C. Wu, Z.Z. Ren, Nucl. Phys. A 933, 82 (2015)

    Article  ADS  Google Scholar 

  36. H. Mei, K. Hagino, J.M. Yao, T. Motoba, Phys. Rev. C 90, 064302 (2014)

    Article  ADS  Google Scholar 

  37. W.X. Xue, J.M. Yao, K. Hagino, Z.P. Li, H. Mei, Y. Tanimura, Phys. Rev. C 91, 024327 (2015)

    Article  ADS  Google Scholar 

  38. H. Mei, K. Hagino, J.M. Yao, Phys. Rev. C 93, 011301(R) (2016)

    Article  ADS  Google Scholar 

  39. X.Y. Wu, H. Mei, J.M. Yao, X.R. Zhou, Phys. Rev. C 95, 034309 (2017)

    Article  ADS  Google Scholar 

  40. J.W. Cui, X.R. Zhou, H.-J. Schulze, Phys. Rev. C 91, 054306 (2015)

    Article  ADS  Google Scholar 

  41. J.W. Cui, X.R. Zhou, L.X. Guo, H.-J. Schulze, Phys. Rev. C 95, 024323 (2017)

    Article  ADS  Google Scholar 

  42. J.W. Cui, X.R. Zhou, Prog. Theor. Exp. Phys. 9, 093D04 (2017)

    Google Scholar 

  43. W.Y. Li, J.W. Cui, X.R. Zhou, Phys. Rev. C 97, 034302 (2018)

    Article  ADS  Google Scholar 

  44. D. Vautherin, Phys. Rev. C 7, 296 (1973)

    Article  ADS  Google Scholar 

  45. M. Bender, K. Rutz, P.-G. Reinhard, J.A. Maruhn, W. Greiner, Phys. Rev. C 60, 034304 (1999)

    Article  ADS  Google Scholar 

  46. P.M.M. Maessen, ThA Rijken, J.J. de Swart, Phys. Rev. C 40, 2226 (1989)

    Article  ADS  Google Scholar 

  47. N. Tajima, P. Bonche, H. Flocard, P.-H. Heenen, M.S. Weiss, Nucl. Phys. A 551, 434 (1993)

    Article  ADS  Google Scholar 

  48. H. Sagawa, X.R. Zhou, X.Z. Zhang, Phys. Rev. C 70, 054316 (2004)

    Article  ADS  Google Scholar 

  49. H. Sagawa, X.R. Zhou, X.Z. Zhang, Phys. Rev. C 72, 054311 (2005)

    Article  ADS  Google Scholar 

  50. M. Bender, K. Rutz, P.-G. Reinhard, J.A. Maruhn, Eur. Phys. J. A 8, 59 (2000)

    Article  ADS  Google Scholar 

  51. P. Ring, P. Schuck, The Nuclear Many-Body Problem (Springer, Berlin, 1980)

    Book  Google Scholar 

  52. S.J. Krieger, P. Bonche, H. Flocard, P. Quentin, M.S. Weiss, Nucl. Phys. A 517, 275 (1990)

    Article  ADS  Google Scholar 

  53. H.-J. Schulze, A. Lejeune, J. Cugnon, M. Baldo, U. Lombardo, Phys. Lett. B 355, 21 (1995)

    Article  ADS  Google Scholar 

  54. M. Baldo, G.F. Burgio, H.-J. Schulze, Phys. Rev. C 61, 055801 (2000)

    Article  ADS  Google Scholar 

  55. H.-J. Schulze, A. Polls, A. Ramos, I. Vidana, Phys. Rev. C 73, 055801 (2006)

    Article  Google Scholar 

  56. K. Hagino, N.W. Lwin, M. Yamagami, Phys. Rev. C 74, 017310 (2006)

    Article  ADS  Google Scholar 

  57. H.-J. Schulze, M. Thi Win, K. Hagino, H. Sagawa, Prog. Theor. Phys. 123, 569 (2010)

    Article  ADS  Google Scholar 

  58. P.-G. Reinhard, H. Flocard, Nucl. Phys. A 584, 467 (1995)

    Article  ADS  Google Scholar 

  59. R. Bertini et al., Phys. Lett. B 83, 306 (1979)

    Article  ADS  Google Scholar 

  60. Y. Yamamoto, Prog. Theor. Phys. 75, 639 (1986)

    Article  ADS  Google Scholar 

  61. P.H. Pile et al., Phys. Rev. Lett. 66, 2585 (1991)

    Article  ADS  Google Scholar 

  62. N. Neelofer, M. Shoeb, M.R. Khan, Pramana J. Phys. 37, 419 (1991)

    Article  ADS  Google Scholar 

  63. T. Hasegawa et al., Phys. Rev. C 53, 1210 (1996)

    Article  ADS  Google Scholar 

  64. H. Hotchi et al., Phys. Rev. C 64, 044302 (2001)

    Article  ADS  Google Scholar 

  65. D.H. Davis, Nucl. Phys. A 754, 3 (2005)

    Article  ADS  Google Scholar 

  66. F. Cusanno et al., Phys. Rev. Lett. 103, 202501 (2009)

    Article  ADS  Google Scholar 

  67. M. Agnello et al., Phys. Lett. B 698, 219 (2011)

    Article  ADS  Google Scholar 

  68. S.M.M. Nejad, A. Armat, Mod. Phys. Lett. A 33, 1850022 (2018)

    Article  ADS  Google Scholar 

  69. Z.X. Liu et al., Phys. Rev. C 98, 024316 (2018)

    Article  ADS  Google Scholar 

  70. Yoshiko Kanada-Enyo, Phys. Rev. C 97, 024330 (2018)

    Article  ADS  Google Scholar 

  71. National Nuclear Data Center. http://www.nndc.bnl.gov/

  72. F. Ajzenberg-Selove, Nucl. Phys. A 506, 1 (1990)

    Article  ADS  Google Scholar 

  73. B. Pritychenko, M. Birch, B. Singh, M. Horoi, At. Data Nucl. Data Tables 78, 1–139 (2016)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Science Foundation of China under contract Nos. 11775081, 11875134 and 11905165, the Natural Science Foundation of Shanghai under contract No. 17ZR1408900, and the Fundamental Research Funds for the Central Universities (No. XJS18020).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xian-Rong Zhou.

Additional information

Communicated by F. Gulminelli

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, BC., Li, WY., Chen, CF. et al. Impurity effects of \(\Lambda \) hyperons on \(p_{\Lambda }\) orbitals. Eur. Phys. J. A 56, 11 (2020). https://doi.org/10.1140/epja/s10050-019-00006-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-019-00006-w

Navigation