Skip to main content
Log in

Determination of contributions from residual light charged hadrons to inclusive charged hadrons from e+e- annihilation data

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract.

In this paper, we present an extraction of the contribution from the “residual” light charged hadrons to the inclusive unidentified light charged hadron fragmentation functions (FFs) at next-to-leading (NLO) and, for the first time, at next-to-next-to-leading order (NNLO) accuracy in perturbative QCD. Considering the contributions from charged pion, kaon and (anti)proton FFs from recent NNFF1.0 analysis of charged hadron FFs, we determine the small but efficient residual charged hadron FFs from QCD analysis of all available single inclusive unidentified charged hadron data sets in electron-positron (\( e^{+} e^{-}\)) annihilations. The zero-mass variable flavor number scheme (ZM-VFNS) has been applied to account for the heavy flavor contributions. The obtained optimum set of residual charged hadron FFs is accompanied by the well-known Hessian technique to assess the uncertainties in the extraction of these new sets of FFs. It is shown that the residual contributions of charged hadron FFs have a very important impact on the inclusive charged hadron FFs and substantially on the quality and the reliability of the QCD fit. Furthermore, this study shows that the residual contributions become also sizable for the case of heavy quark FFs as well as for the c- and b-tagged cross sections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Gao, L. Harland-Lang, J. Rojo, Phys. Rep. 742, 1 (2018) arXiv:1709.04922 [hep-ph]

    ADS  MathSciNet  Google Scholar 

  2. NNPDF Collaboration (R.D. Ball et al.), Eur. Phys. J. C 77, 663 (2017) arXiv:1706.00428 [hep-ph]

    Google Scholar 

  3. NNPDF Collaboration (V. Bertone et al.), Eur. Phys. J. C 78, 651 (2018) arXiv:1807.03310 [hep-ph]

    Google Scholar 

  4. NNPDF Collaboration (V. Bertone et al.), Eur. Phys. J. C 77, 516 (2017) arXiv:1706.07049 [hep-ph]

    Google Scholar 

  5. D. d’Enterria, K.J. Eskola, I. Helenius, H. Paukkunen, Nucl. Phys. B 883, 615 (2014) arXiv:1311.1415 [hep-ph]

    ADS  Google Scholar 

  6. L. Bourhis, M. Fontannaz, J.P. Guillet, M. Werlen, Eur. Phys. J. C 19, 89 (2001) arXiv:hep-ph/0009101

    ADS  Google Scholar 

  7. B.A. Kniehl, G. Kramer, B. Potter, Nucl. Phys. B 582, 514 (2000) arXiv:hep-ph/0010289

    ADS  Google Scholar 

  8. S. Kretzer, Phys. Rev. D 62, 054001 (2000) arXiv:hep-ph/0003177

    ADS  Google Scholar 

  9. C.A. Aidala, F. Ellinghaus, R. Sassot, J.P. Seele, M. Stratmann, Phys. Rev. D 83, 034002 (2011) arXiv:1009.6145 [hep-ph]

    ADS  Google Scholar 

  10. M. Zarei, F. Taghavi-Shahri, S. Atashbar Tehrani, M. Sarbishei, Phys. Rev. D 92, 074046 (2015) arXiv:1601.02815 [hep-ph]

    ADS  Google Scholar 

  11. G.R. Boroun, S. Zarrin, S. Dadfar, Nucl. Phys. A 953, 21 (2016)

    ADS  Google Scholar 

  12. I. Helenius, H. Paukkunen, JHEP 05, 196 (2018) arXiv:1804.03557 [hep-ph]

    ADS  Google Scholar 

  13. M. Soleymaninia, H. Khanpour, S.M. Moosavi Nejad, Phys. Rev. D 97, 074014 (2018) arXiv:1711.11344 [hep-ph]

    ADS  Google Scholar 

  14. D. de Florian, R. Sassot, M. Epele, R.J. Hernández-Pinto, M. Stratmann, Phys. Rev. D 91, 014035 (2015) arXiv:1410.6027 [hep-ph]

    ADS  Google Scholar 

  15. D. de Florian, M. Epele, R.J. Hernandez-Pinto, R. Sassot, M. Stratmann, Phys. Rev. D 95, 094019 (2017) arXiv:1702.06353 [hep-ph]

    ADS  Google Scholar 

  16. M. Hirai, H. Kawamura, S. Kumano, K. Saito, Prog. Theor. Exp. Phys. 2016, 113B04 (2016) arXiv:1608.04067 [hep-ph]

    Google Scholar 

  17. N. Sato, J.J. Ethier, W. Melnitchouk, M. Hirai, S. Kumano, A. Accardi, Phys. Rev. D 94, 114004 (2016) arXiv:1609.00899 [hep-ph]

    ADS  Google Scholar 

  18. D.P. Anderle, T. Kaufmann, M. Stratmann, F. Ringer, I. Vitev, Phys. Rev. D 96, 034028 (2017) arXiv:1706.09857 [hep-ph]

    ADS  Google Scholar 

  19. D. de Florian, R. Sassot, M. Stratmann, Phys. Rev. D 76, 074033 (2007) arXiv:0707.1506 [hep-ph]

    ADS  Google Scholar 

  20. E.R. Nocera, PoS DIS 2017, 231 (2018) arXiv:1709.03400 [hep-ph]

    Google Scholar 

  21. M. Soleymaninia, M. Goharipour, H. Khanpour, Phys. Rev. D 98, 074002 (2018) arXiv:1805.04847 [hep-ph]

    ADS  MathSciNet  Google Scholar 

  22. Belle Collaboration (M. Leitgab et al.), Phys. Rev. Lett. 111, 062002 (2013) arXiv:1301.6183 [hep-ex]

    Google Scholar 

  23. Belle Collaboration (R. Seidl et al.), Phys. Rev. D 92, 092007 (2015) arXiv:1509.00563 [hep-ex]

    ADS  Google Scholar 

  24. BaBar Collaboration (J.P. Lees et al.), Phys. Rev. D 88, 032011 (2013) arXiv:1306.2895 [hep-ex]

    Google Scholar 

  25. HERMES Collaboration (A. Airapetian et al.), Phys. Rev. D 87, 074029 (2013) arXiv:1212.5407 [hep-ex]

    Google Scholar 

  26. COMPASS Collaboration (C. Adolph et al.), Phys. Lett. B 764, 1 (2017) arXiv:1604.02695 [hep-ex]

    Google Scholar 

  27. COMPASS Collaboration (C. Adolph et al.), Phys. Lett. B 767, 133 (2017) arXiv:1608.06760 [hep-ex]

    Google Scholar 

  28. CMS Collaboration (S. Chatrchyan et al.), JHEP 08, 086 (2011) arXiv:1104.3547 [hep-ex]

    ADS  Google Scholar 

  29. CMS Collaboration (S. Chatrchyan et al.), Eur. Phys. J. C 72, 1945 (2012) arXiv:1202.2554 [nucl-ex]

    ADS  Google Scholar 

  30. ALICE Collaboration (B.B. Abelev et al.), Eur. Phys. J. C 73, 2662 (2013) arXiv:1307.1093 [nucl-ex]

    ADS  Google Scholar 

  31. STAR Collaboration (L. Adamczyk et al.), Phys. Rev. D 89, 012001 (2014) arXiv:1309.1800 [nucl-ex]

    ADS  Google Scholar 

  32. PHENIX Collaboration (A. Adare et al.), Phys. Rev. D 76, 051106 (2007) arXiv:0704.3599 [hep-ex]

    Google Scholar 

  33. CDF Collaboration (F. Abe et al.), Phys. Rev. Lett. 61, 1819 (1988)

    Google Scholar 

  34. CDF Collaboration (T. Aaltonen et al.), Phys. Rev. D 79, 112005 (2009) Phys. Rev. D 82

    Google Scholar 

  35. D. de Florian, R. Sassot, M. Stratmann, Phys. Rev. D 75, 114010 (2007) arXiv:hep-ph/0703242 [hep-ph]

    ADS  Google Scholar 

  36. M. Soleymaninia, A.N. Khorramian, S.M. Moosavi Nejad, F. Arbabifar, Phys. Rev. D 88, 054019 (2013) Phys. Rev. D 89

    ADS  Google Scholar 

  37. STAR Collaboration (J. Adams et al.), Nucl. Phys. A 757, 102 (2005) arXiv:nucl-ex/0501009

    ADS  Google Scholar 

  38. N. Armesto et al., J. Phys. G 35, 054001 (2008) arXiv:0711.0974 [hep-ph]

    Google Scholar 

  39. A. Mitov, S.O. Moch, Nucl. Phys. B 751, 18 (2006) arXiv:hep-ph/0604160

    ADS  Google Scholar 

  40. P.J. Rijken, W.L. van Neerven, Phys. Lett. B 392, 207 (1997) arXiv:hep-ph/9609379

    ADS  Google Scholar 

  41. J. Blumlein, V. Ravindran, Nucl. Phys. B 749, 1 (2006) arXiv:hep-ph/0604019

    ADS  Google Scholar 

  42. V. Bertone, S. Carrazza, J. Rojo, Comput. Phys. Commun. 185, 1647 (2014) arXiv:1310.1394 [hep-ph]

    ADS  MathSciNet  Google Scholar 

  43. V.N. Gribov, L.N. Lipatov, Sov. J. Nucl. Phys. 15, 438 (1972) (Yad. Fiz. 15

    Google Scholar 

  44. L.N. Lipatov, Sov. J. Nucl. Phys. 20, 94 (1975) (Yad. Fiz. 20

    Google Scholar 

  45. G. Altarelli, G. Parisi, Nucl. Phys. B 126, 298 (1977)

    ADS  Google Scholar 

  46. Y.L. Dokshitzer, Sov. Phys. JETP 46, 641 (1977) (Zh. Eksp. Teor. Fiz. 73

    ADS  Google Scholar 

  47. V. Bertone, S. Carrazza, E.R. Nocera, JHEP 03, 046 (2015) arXiv:1501.00494 [hep-ph]

    ADS  Google Scholar 

  48. TASSO Collaboration (W. Braunschweig et al.), Z. Phys. C 47, 187 (1990)

    Google Scholar 

  49. TPC/Two Gamma Collaboration (H. Aihara et al.), Phys. Rev. Lett. 61, 1263 (1988)

    Google Scholar 

  50. ALEPH Collaboration (D. Buskulic et al.), Phys. Lett. B 357, 487 (1995) Phys. Lett. B 364

    ADS  Google Scholar 

  51. DELPHI Collaboration (P. Abreu et al.), Eur. Phys. J. C 5, 585 (1998)

    Google Scholar 

  52. DELPHI Collaboration (P. Abreu et al.), Eur. Phys. J. C 6, 19 (1999)

    ADS  Google Scholar 

  53. OPAL Collaboration (K. Ackerstaff et al.), Eur. Phys. J. C 7, 369 (1999) arXiv:hep-ex/9807004

    ADS  Google Scholar 

  54. SLD Collaboration (K. Abe et al.), Phys. Rev. D 69, 072003 (2004) arXiv:hep-ex/0310017

    Google Scholar 

  55. F. James, M. Roos, Comput. Phys. Commun. 10, 343 (1975)

    ADS  Google Scholar 

  56. F. James, MINUIT Function Minimization and Error Analysis: Reference Manual Version 94.1, CERN-D-506, CERN-D506.

  57. A.D. Martin, R.G. Roberts, W.J. Stirling, R.S. Thorne, Eur. Phys. J. C 35, 325 (2004) arXiv:hep-ph/0308087

    ADS  Google Scholar 

  58. A.D. Martin, W.J. Stirling, R.S. Thorne, G. Watt, Eur. Phys. J. C 63, 189 (2009) arXiv:0901.0002 [hep-ph]

    ADS  Google Scholar 

  59. S. Atashbar Tehrani, Phys. Rev. C 86, 064301 (2012)

    ADS  Google Scholar 

  60. F. Taghavi-Shahri, H. Khanpour, S. Atashbar Tehrani, Z. Alizadeh Yazdi, Phys. Rev. D 93, 114024 (2016) arXiv:1603.03157 [hep-ph]

    ADS  Google Scholar 

  61. H. Khanpour, S. Atashbar Tehrani, Phys. Rev. D 93, 014026 (2016) arXiv:1601.00939 [hep-ph]

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Taghavi-Shahri.

Additional information

Communicated by R. Alkofer

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: All data used in this analysis are properly referred and all data generated during this study are contained in this published article.]

Publisher’s Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohamaditabar, A., Taghavi-Shahri, F., Khanpour, H. et al. Determination of contributions from residual light charged hadrons to inclusive charged hadrons from e+e- annihilation data. Eur. Phys. J. A 55, 185 (2019). https://doi.org/10.1140/epja/i2019-12881-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2019-12881-4

Navigation