Skip to main content
Log in

New collective structures in the 163Yb nucleus

  • Regular Article - Experimental Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract.

The 152Sm(16O, 5n)163Yb reaction at a beam energy of 93 MeV was used to study the excited states of 163Yb with the AFRODITE \(\gamma\)-ray spectrometer at iThemba LABS. The level scheme of 163Yb has been extended and new rotational bands established. The band based on the ground-state has been extended from a spin of 11/2- to spin 43/2-. A high-K band based on the neutron [505]11/2- Nilsson orbital has been observed and is reported for the first time in this work. Additional new states in 163Yb were observed which all decay to the yrast band. Some of these states are placed in a sequence which is conjectured to be a \( \gamma\) band involving a coupling with the i13/2[642]5/2+ neutron orbital. The band structures are discussed with reference to Cranked Shell Model (CSM) calculations and a systematic comparison with the neighbouring nuclei.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P.E. Garrett, J. Phys. G 27, R1 (2001)

    Article  ADS  Google Scholar 

  2. P.E. Garrett, J.L. Wood, S.W. Yates, Phys. Scr. 83, 0633001 (2018)

    Google Scholar 

  3. J.F. Sharpey-Schafer et al., Eur. Phys. J. A 47, 5 (2011)

    Article  ADS  Google Scholar 

  4. J.F. Sharpey-Schafer et al., Eur. Phys. J. A 47, 6 (2011)

    Article  ADS  Google Scholar 

  5. J.F. Sharpey-Schafer et al., Eur. Phys. J. A 55, 15 (2019)

    Article  ADS  Google Scholar 

  6. J.L. Wood et al., Phys. Rev. C 70, 024308 (2004)

    Article  ADS  Google Scholar 

  7. J.M. Allmond et al., Phys. Rev. C 78, 014302 (2008)

    Article  ADS  Google Scholar 

  8. E. Grosse et al., Phys. Scr. 92, 114003 (2017)

    Article  ADS  Google Scholar 

  9. E. Grosse et al., Phys. Scr. 94, 014008 (2019)

    Article  ADS  Google Scholar 

  10. J. Kownacki et al., Nucl. Phys. A 394, 269 (1983)

    Article  ADS  Google Scholar 

  11. G.B. Hagemann et al., Nucl. Phys. A 618, 199 (1997)

    Article  ADS  Google Scholar 

  12. J. Simpson et al., Eur. Phys. J. A 1, 267 (1998)

    Article  ADS  Google Scholar 

  13. G. Schonwasser et al., Eur. Phys. J. A 13, 291 (2002)

    Article  ADS  Google Scholar 

  14. L. Richter, Z. Phys. A 290, 213 (1979)

    Article  ADS  Google Scholar 

  15. J.F. Sharpey-Schafer, Nucl. Phys. News Int. 14, 5 (2004)

    Article  Google Scholar 

  16. J.L. Conradie, in Cyclotrons and Their Applications, Proceedings, 18th International Conference, Catania, October 2007, p. 140

  17. K.S. Krane, Introductory Nuclear Physics (John Wiley & Sons, 1988)

  18. A. Gavron, Phys. Rev. C 21, 230 (1980)

    Article  ADS  Google Scholar 

  19. P.J. Twin, Nucl. Instrum. Methods 106, 481 (1973)

    Article  ADS  Google Scholar 

  20. R. Bengstsson, S. Frauendorf, Nucl. Phys. A 327, 139 (1979)

    Article  ADS  Google Scholar 

  21. R. Bengstsson et al., At. Data Nucl. Data Tables 35, 15 (1986)

    Article  ADS  Google Scholar 

  22. L. Chen et al., Phys. Rev. C 83, 034318 (2011)

    Article  ADS  Google Scholar 

  23. M. Sugawara et al., Nucl. Phys. A 699, 450 (2002)

    Article  ADS  Google Scholar 

  24. L.L. Riedinger et al., Nucl. Phys. A 347, 141 (1980)

    Article  ADS  Google Scholar 

  25. J.D. Garrett et al., Phys. Rev. Lett. 47, 75 (1981)

    Article  ADS  Google Scholar 

  26. J.D. Garrett et al., Phys. Lett. B 118, 297 (1982)

    Article  ADS  Google Scholar 

  27. S.J. Gale et al., J. Phys. G 21, 193 (1995)

    ADS  Google Scholar 

  28. M. Mustafa et al., Phys. Rev. C 84, 054320 (2011)

    Article  ADS  Google Scholar 

  29. G. Gervais et al., Nucl. Phys. A 624, 257 (1997)

    Article  ADS  Google Scholar 

  30. E.M. Beck et al., Nucl. Phys. A 464, 472 (1987)

    Article  ADS  Google Scholar 

  31. D.E. Archer et al., Phys. Rev. C 57, 2924 (1998)

    Article  ADS  Google Scholar 

  32. A. Fitzpatrick et al., Nucl. Phys. A 582, 335 (1995)

    Article  ADS  Google Scholar 

  33. N. Roy et al., Nucl. Phys. A 382, 125 (1982)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Sithole.

Additional information

Communicated by M.J. Garcia Borge

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: All data generated during this study are contained in this published article.]

Publisher’s Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sithole, M.A., Sharpey Schafer, J.F., Majola, S.N.T. et al. New collective structures in the 163Yb nucleus. Eur. Phys. J. A 55, 178 (2019). https://doi.org/10.1140/epja/i2019-12866-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2019-12866-3

Navigation