Skip to main content
Log in

Study of \(\gamma\)-ray background from cosmic muon induced neutrons

  • Regular Article - Experimental Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract.

The contribution to \(\gamma\)-ray background from secondary neutrons, originating from cosmic muon interactions in Pb-Cu composite shield, has been measured via \((\mathrm{n},\mathrm{n}^{\prime} \gamma)\) reactions in Cu and Ge. The minimization of background plays a key role in improving the sensitivity of rare event experimental searches like neutrinoless double beta decay and neutron background is often a major concern. It is important to understand secondary neutron production from cosmic muons, especially in materials like Cu and Pb, which often form a part of the detector or shields. The direct contribution of fast neutrons generated from cosmic muon interactions to the \(\gamma\)-ray background via \((\mathrm{n},\mathrm{n}^{\prime} \gamma)\) reactions is investigated for the first time. Measurements are carried out in the low background HPGe detector setup, TiLES, using Pb-Cu composite shield as target material for muon interactions. Simulations have been carried out with GEANT4.10.00 and GEANT4.10.05, each with two different Physics lists. The observed intensities of \((\mathrm{n},\mathrm{n}^{\prime} \gamma)\) for Cu are significantly under-predicted by GEANT4.10.00, while GEANT4.10.05 shows good agreement with the experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. R. Henning, Rev. Phys. 1, 29 (2016)

    Article  Google Scholar 

  2. S. Dell’Oro et al., Adv. High Energy Phys. 29, 2162659 (2016)

    Google Scholar 

  3. R. Agnese et al., Phys. Rev. Lett. 111, 251301 (2013)

    Article  ADS  Google Scholar 

  4. D.S. Akerib et al., Phys. Rev. Lett. 118, 021303 (2014)

    Article  ADS  Google Scholar 

  5. D.M. Mei, A. Hime, Phys. Rev. D 73, 053004 (2006)

    Article  ADS  Google Scholar 

  6. N. Dokania et al., JINST 10, T12005 (2015)

    Article  ADS  Google Scholar 

  7. H.M. Kluck, PhD Thesis, Karlsruhe Institute of Technology (2013)

  8. O.M. Horn, PhD Thesis, Karlsruhe Institute of Technology (2007)

  9. A. Da Silva et al., Nucl. Instrum. Methods A 324, 553 (1995)

    Article  ADS  Google Scholar 

  10. F. Boehm et al., Phys. Rev. D 62, 092005 (2000)

    Article  ADS  Google Scholar 

  11. I. Abt et al., Astropart. Phys. 90, 1 (2017)

    Article  ADS  Google Scholar 

  12. L. Reichhart et al., Astropart. Phys. 47, 67 (2013)

    Article  ADS  Google Scholar 

  13. M. Aglietta, Proceedings of the Twenty-sixth International Cosmic Ray conference, Salt lake City, Vol. 2 (AIP, NY, 1999) p. 44

  14. C. Zhang, D.M. Mei, Phys. Rev. D 90, 122003 (2014)

    Article  ADS  Google Scholar 

  15. Y.F. Wang et al., Phys. Rev. D 4764, 013012 (2001)

    Article  ADS  Google Scholar 

  16. V.A. Kudryavstev et al., Nucl. Instrum. Methods 505, 688 (2003)

    Article  ADS  Google Scholar 

  17. A. Lindote et al., Astropart. Phys. 31, 366 (2009)

    Article  ADS  Google Scholar 

  18. V. Nanal, EPJ Web of Conferences 112, 1375 (2017)

    Google Scholar 

  19. N. Dokania et al., Nucl. Instrum. Methods A 745, 119 (2014)

    Article  ADS  Google Scholar 

  20. N. Dokania et al., Eur. Phys. J. A 53, 74 (2017)

    Article  ADS  Google Scholar 

  21. D.M. Mei et al., Phys. Rev. C 77, 054614 (2008)

    Article  ADS  Google Scholar 

  22. G. Gupta et al., Proc. DAE-BRNS Symp. Nucl. Phys. 61, 1026 (2016)

    Google Scholar 

  23. https://root.cern.ch/

  24. G. Cocconi, V. Cocconi Tongiorgi, Phys. Rev. 84, 29 (1951)

    Article  ADS  Google Scholar 

  25. D. Heck, Forschungzentrum Karlsruhe Report FZKA 6019, (1998)

  26. D.F. Smart, M.A. Shea, Adv. Space Res. 36, 2012 (1998)

    Article  ADS  Google Scholar 

  27. S. Agostinelli et al., Nucl. Instrum. Methods A 506, 250 (2003)

    Article  ADS  Google Scholar 

  28. J. Allison et al., Nucl. Instrum. Methods A 835, 186 (2016)

    Article  ADS  Google Scholar 

  29. The CMS Collaboration, Phys. Lett. B 692, 83 (2010)

    Article  ADS  Google Scholar 

  30. https://www.nndc.bnl.gov/

  31. http://www.tifr.res.in/~pell/lamps.html

  32. L.A. Currie, Anal Chem. 40, 586 (1968)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Nanal.

Additional information

Communicated by C. Broggini

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: All data generated during this study are contained in this published article.]

Publisher’s Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krishnamoorthy, H., Gupta, G., Garai, A. et al. Study of \(\gamma\)-ray background from cosmic muon induced neutrons. Eur. Phys. J. A 55, 136 (2019). https://doi.org/10.1140/epja/i2019-12822-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2019-12822-3

Navigation