Skip to main content
Log in

Nucleon structure functions from the NJL-model chiral soliton

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract.

We present numerical simulations for unpolarized and polarized structure functions in a chiral soliton model. The soliton is constructed self-consistently from quark fields from which the structure functions are extracted. Central to the project is regularizing the Dirac sea (or vacuum) contribution to structure functions directly from the regularized action functional that defines the model. In turn, the structure functions are obtained from matrix elements of symmetry currents without assumptions on the nature of quark bilocal and bilinear operators. We discuss in detail how sum rules are realized at the level of the quark wave-functions in momentum space. The comparison with experimental data is convincing for the polarized structure functions but exhibits some discrepancies in the unpolarized case. The vacuum contribution to the polarized structure functions is particularly small.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. T. Muta, Foundations of Quantum Chromodynamics (World Scientific, Singapore, 1987)

  2. R.G. Roberts, The Structure of the Proton, Cambridge Monographs on Mathematical Physics (Cambridge University Press, 1990)

  3. F.J. Ynduráin, The Theory of Quark and Gluon Interactions (Springer-Verlag, Berlin, Heidelberg, New York, 1993)

  4. J. Pumplin, D.R. Stump, J. Huston, H.L. Lai, P.M. Nadolsky, W.K. Tung, JHEP 07, 012 (2002) arXiv:hep-ph/0201195

    Article  ADS  Google Scholar 

  5. J.J.J. Kokkedee, The Quark Model (Benjamin, New York, 1979)

  6. A.W. Thomas, Adv. Nucl. Phys. 13, 1 (1984)

    Google Scholar 

  7. P. Maris, C.D. Roberts, Int. J. Mod. Phys. E 12, 297 (2003) arXiv:nucl-th/0301049

    Article  ADS  Google Scholar 

  8. H. Weigel, Lect. Notes Phys. 743, 1 (2008)

    Article  Google Scholar 

  9. R. Alkofer, H. Reinhardt, H. Weigel, Phys. Rep. 265, 139 (1996) arXiv:hep-ph/9501213

    Article  ADS  MathSciNet  Google Scholar 

  10. C. Christov, A. Blotz, H.-C. Kim, P. Pobylitsa, T. Watabe, T. Meissner et al., Prog. Part. Nucl. Phys. 37, 91 (1996) arXiv:hep-ph/9604441

    Article  ADS  Google Scholar 

  11. H. Weigel, L.P. Gamberg, H. Reinhardt, Phys. Lett. B 399, 287 (1997) arXiv:hep-ph/9604295

    Article  ADS  Google Scholar 

  12. H. Weigel, L.P. Gamberg, H. Reinhardt, Phys. Rev. D 55, 6910 (1997) arXiv:hep-ph/9609226

    Article  ADS  Google Scholar 

  13. D. Diakonov, V. Petrov, P. Pobylitsa, M.V. Polyakov, C. Weiss, Nucl. Phys. B 480, 341 (1996) arXiv:hep-ph/9606314

    Article  ADS  Google Scholar 

  14. D. Diakonov, V.Yu. Petrov, P.V. Pobylitsa, M.V. Polyakov, C. Weiss, Phys. Rev. D 56, 4069 (1997) arXiv:hep-ph/9703420

    Article  ADS  Google Scholar 

  15. P.V. Pobylitsa, M.V. Polyakov, K. Goeke, T. Watabe, C. Weiss, Phys. Rev. D 59, 034024 (1999) arXiv:hep-ph/9804436

    Article  ADS  Google Scholar 

  16. M. Wakamatsu, T. Kubota, Phys. Rev. D 57, 5755 (1998) arXiv:hep-ph/9707500

    Article  ADS  Google Scholar 

  17. M. Wakamatsu, T. Kubota, Phys. Rev. D 60, 034020 (1999) arXiv:hep-ph/9809443

    Article  ADS  Google Scholar 

  18. M. Wakamatsu, Phys. Rev. D 67, 034005 (2003)

    Article  ADS  Google Scholar 

  19. M. Wakamatsu, Phys. Rev. D 67, 034006 (2003) arXiv:hep-ph/0212356

    Article  ADS  Google Scholar 

  20. H. Weigel, E. Ruiz Arriola, L.P. Gamberg, Nucl. Phys. B 560, 383 (1999) arXiv:hep-ph/9905329

    Article  ADS  Google Scholar 

  21. I. Takyi, H. Weigel, arXiv:1903.10748 (2019)

  22. T. Frederico, G.A. Miller, Phys. Rev. D 50, 210 (1994)

    Article  ADS  Google Scholar 

  23. R.M. Davidson, E. Ruiz Arriola, Phys. Lett. B 348, 163 (1995)

    Article  ADS  Google Scholar 

  24. H. Reinhardt, Nucl. Phys. A 503, 825 (1989)

    Article  ADS  Google Scholar 

  25. G.S. Adkins, C.R. Nappi, E. Witten, Nucl. Phys. B 228, 552 (1983)

    Article  ADS  Google Scholar 

  26. I. Takyi, Structure Functions of the Nucleon in a Soliton Model, PhD Thesis, Stellenbosch University (2019) electronic version available at http://scholar.sun.ac.za/bitstream/handle/10019.1/106075/takyi_nucleon_2019.pdf

  27. S. Kahana, G. Ripka, Nucl. Phys. A 429, 462 (1984)

    Article  ADS  Google Scholar 

  28. J.D. Bjorken, Phys. Rev. D 1, 1376 (1970)

    Article  ADS  Google Scholar 

  29. S.L. Adler, Phys. Rev. 143, 1144 (1966)

    Article  ADS  Google Scholar 

  30. H. Weigel, L.P. Gamberg, H. Reinhardt, Mod. Phys. Lett. A 11, 3021 (1996)

    Article  ADS  Google Scholar 

  31. L.P. Gamberg, H. Reinhardt, H. Weigel, Int. J. Mod. Phys. A 13, 5519 (1998) arXiv:hep-ph/9707352

    Article  ADS  Google Scholar 

  32. New Muon Collaboration, Phys. Rev. D 50, R1 (1994)

    Google Scholar 

  33. M. Wakamatsu, T. Watabe, Phys. Lett. B 312, 184 (1993)

    Article  ADS  Google Scholar 

  34. C.V. Christov, A. Blotz, K. Goeke, P. Pobylitsa, V. Petrov, M. Wakamatsu et al., Phys. Lett. B 325, 467 (1994) arXiv:hep-ph/9312279

    Article  ADS  Google Scholar 

  35. R. Alkofer, H. Weigel, Phys. Lett. B 319, 1 (1993) arXiv:hep-ph/9308327

    Article  ADS  Google Scholar 

  36. M. Wakamatsu, Prog. Theor. Phys. 95, 143 (1996)

    Article  ADS  Google Scholar 

  37. Particle Data Group Collaboration, Phys. Rev. D 54, 1 (1996)

    Google Scholar 

  38. COMPASS Collaboration, Phys. Lett. B 647, 8 (2007) arXiv:hep-ex/0609038

    Article  ADS  Google Scholar 

  39. C.A. Aidala, S.D. Bass, D. Hasch, G.K. Mallot, Rev. Mod. Phys. 85, 655 (2013) arXiv:1209.2803

    Article  ADS  Google Scholar 

  40. R.L. Jaffe, Phys. Rev. D 11, 1953 (1975)

    Article  ADS  Google Scholar 

  41. R.L. Jaffe, Ann. Phys. 132, 32 (1981)

    Article  ADS  Google Scholar 

  42. V.N. Gribov, L.N. Lipatov, Sov. J. Nucl. Phys. 15, 438 (1972)

    Google Scholar 

  43. G. Altarelli, G. Parisi, Nucl. Phys. B 126, 298 (1977)

    Article  ADS  Google Scholar 

  44. Y.L. Dokshitzer, Sov. Phys. JETP 46, 641 (1977)

    ADS  Google Scholar 

  45. M.E. Peskin, D.V. Schroeder, An Introduction to Quantum Field Theory (Westview Press, 1995)

  46. H. Weigel, Nucl. Phys. A 670, 92 (2000) arXiv:hep-ph/9902390

    Article  ADS  Google Scholar 

  47. E143 Collaboration, Phys. Rev. Lett. 74, 346 (1995)

    Article  Google Scholar 

  48. E143 Collaboration, Phys. Rev. D 58, 112003 (1998) arXiv:hep-ph/9802357

    Article  Google Scholar 

  49. Jefferson Lab Hall A Collaboration, Phys. Rev. D 94, 052003 (2016) arXiv:1603.03612

    Article  ADS  Google Scholar 

  50. E143 Collaboration, Phys. Rev. Lett. 76, 587 (1996) arXiv:hep-ex/9511013

    Article  Google Scholar 

  51. L.V. Gribov, E.M. Levin, M.G. Ryskin, Phys. Rep. 100, 1 (1983)

    Article  ADS  Google Scholar 

  52. I.R. Kenyon, Rep. Prog. Phys. 45, 1261 (1982)

    Article  ADS  Google Scholar 

  53. R.L. Jaffe, X.-D. Ji, Phys. Rev. Lett. 67, 552 (1991)

    Article  ADS  Google Scholar 

  54. R.L. Jaffe, X.-D. Ji, Nucl. Phys. B 375, 527 (1992)

    Article  ADS  Google Scholar 

  55. X. Ji, Phys. Rev. Lett. 110, 262002 (2013) arXiv:1305.1539

    Article  ADS  Google Scholar 

  56. C. Alexandrou, K. Cichy, M. Constantinou, K. Hadjiyiannakou, K. Jansen, F. Steffens et al., Phys. Rev. D 96, 014513 (2017) arXiv:1610.03689

    Article  ADS  Google Scholar 

  57. W. Broniowski, E. Ruiz Arriola, Phys. Lett. B 773, 385 (2017) arXiv:1707.09588

    Article  ADS  Google Scholar 

  58. L. Gamberg, Z.B. Kang, I. Vitev, H. Xing, Phys. Lett. 743, 112 (2015) arXiv:1412.3401

    Article  Google Scholar 

  59. G. Altarelli, P. Nason, G. Ridolfi, Phys. Lett. B 320, 152 (1994) arXiv:hep-ph/9311255

    Article  ADS  Google Scholar 

  60. R.L. Jaffe, Comments Nucl. Part. Phys. 19, 239 (1990)

    Google Scholar 

  61. X.-D. Ji, C.-h. Chou, Phys. Rev. D 42, 3637 (1990)

    Article  ADS  Google Scholar 

  62. R.L. Jaffe, X.-D. Ji, Phys. Rev. D 43, 724 (1991)

    Article  ADS  Google Scholar 

  63. S. Wandzura, F. Wilczek, Phys. Lett. B 72, 195 (1977)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Weigel.

Additional information

Communicated by R. Alkofer

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: All data generated in this study to reach the presented conclusions are contained in this published article.]

Publisher’s Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Takyi, I., Weigel, H. Nucleon structure functions from the NJL-model chiral soliton. Eur. Phys. J. A 55, 128 (2019). https://doi.org/10.1140/epja/i2019-12806-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2019-12806-3

Navigation