Skip to main content
Log in

A still unsettled issue in the nucleon spin decomposition problem: On the role of surface terms and gluon topology

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract.

In almost all the past analyses of the decomposition of the nucleon spin into its constituents, surface terms are simply assumed to vanish and not to affect the integrated sum rule of the nucleon spin. However, several authors claim that neglect of surface terms is not necessarily justified, especially owing to the possible nontrivial topological configuration of the gluon field in the QCD vacuum. There also exist some arguments indicating that the nontrivial gluon topology would bring about a delta-function type singularity at zero Bjorken variable into the longitudinally polarized gluon distribution function, thereby invalidating a naive partonic sum rule for the total nucleon spin. In the present paper, we carefully examine the role of surface terms in the nucleon spin decomposition problem. We shall argue that surface terms do not prevent us from obtaining a physically meaningful decomposition of the nucleon spin. In particular, we demonstrate that nontrivial topology of the gluon field would not bring about a delta-function type singularity into the longitudinally polarized gluon distribution functions. We also make some critical comments on the recent analyses of the role of surface terms in the density level decomposition of the total nucleon angular momentum as well as that of the total photon angular momentum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Leader, C. Lorce, Phys. Rep. 541, 163 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  2. M. Wakamatsu, Int. J. Mod. Phys. A 29, 1430012 (2014)

    Article  ADS  Google Scholar 

  3. R. Jaffe, A. Manohar, Nucl. Phys. B 337, 509 (1990)

    Article  ADS  Google Scholar 

  4. X. Ji, Phys. Rev. Lett. 78, 610 (1997)

    Article  ADS  Google Scholar 

  5. X.-S. Chen, X.-F. Lu, W.-M. Sun, F. Wang, T. Goldman, Phys. Rev. Lett. 100, 232002 (2008)

    Article  ADS  Google Scholar 

  6. X.-S. Chen, W.-M. Sun, X.-F. Lu, F. Wang, T. Goldman, Phys. Rev. Lett. 103, 062001 (2009)

    Article  ADS  Google Scholar 

  7. S. Bashinsky, R. Jaffe, Nucl. Phys. B 536, 303 (1998)

    Article  ADS  Google Scholar 

  8. M. Wakamatsu, Phys. Rev. D 81, 114010 (2010)

    Article  ADS  Google Scholar 

  9. M. Wakamatsu, Phys. Rev. D 83, 014012 (2011)

    Article  ADS  Google Scholar 

  10. M. Wakamatsu, Eur. Phys. J. A 51, 52 (2015)

    Article  ADS  Google Scholar 

  11. M. Wakamatsu, Phys. Rev. D 94, 056004 (2016)

    Article  ADS  Google Scholar 

  12. M. Wakamatsu, Phys. Rev. D 87, 094035 (2013)

    Article  ADS  Google Scholar 

  13. P. Lowdon, Nucl. Phys. B 889, 801 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  14. S. Bass, Rev. Mod. Phys. 77, 1257 (2005)

    Article  ADS  Google Scholar 

  15. S. Bass, Mod. Phys. Lett. A 24, 1087 (2009)

    Article  ADS  Google Scholar 

  16. S. Tiwari, Topological approach to proton spin problem: Decomposition controversy and beyond, arXiv:1509.04159 [physics.gen-ph]

  17. G. Nayak, Effect of confinement on proton spin crisis: Angular momentum flux contribution to the proton spin, arXiv:1803.08371 [hep-ph]

  18. G. Nayak, Boundary surface term in QCD is at finite distance due to confinement of quarks and gluons inside finite size hadron, arXiv:1807.09158 [physics.gen-ph]

  19. M. Burkardt, Y. Koike, Nucl. Phys. B 632, 311 (2002)

    Article  ADS  Google Scholar 

  20. F. Aslan, M. Burkardt, Singularities in twist-3 quark distributions, arXiv:1811.00938 [nucl-th]

  21. M. Wakamatsu, Y. Ohnishi, Phys. Rev. D 67, 114011 (2003)

    Article  ADS  Google Scholar 

  22. A. Efremov, P. Schweitzer, JHEP 08, 006 (2003)

    Article  ADS  Google Scholar 

  23. Y. Ohnishi, M. Wakamatsu, Phys. Rev. D 69, 114002 (2004)

    Article  ADS  Google Scholar 

  24. P. Schweitzer, Phys. Rev. D 67, 114010 (2003)

    Article  ADS  Google Scholar 

  25. E. Leader, Phys. Lett. B 756, 303 (2016)

    Article  ADS  Google Scholar 

  26. E. Leader, Phys. Lett. B 779, 385 (2018)

    Article  ADS  Google Scholar 

  27. C. Lorce, L. Mantovani, B. Pasquini, Phys. Lett. B 776, 38 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  28. A. Stewart, Eur. J. Phys. 26, 635 (2005)

    Article  Google Scholar 

  29. G. Shore, B. White, Nucl. Phys. B 581, 409 (2000)

    Article  ADS  Google Scholar 

  30. B. Bakker, E. Leader, T. Trueman, Phys. Rev. D 70, 114001 (2004)

    Article  ADS  Google Scholar 

  31. K. Sasaki, Prog. Theor. Phys. 54, 1816 (1975)

    Article  ADS  Google Scholar 

  32. M. Ahmed, G. Ross, Phys. Lett. B 56, 385 (1975)

    Article  ADS  Google Scholar 

  33. J. Collins, D. Soper, Nucl. Phys. B 194, 445 (1982)

    Article  ADS  Google Scholar 

  34. J. Kodaira, K. Tanaka, Prog. Theor. Phys. 101, 191 (1999)

    Article  ADS  Google Scholar 

  35. A. Belitsky, X. Ji, F. Yuan, Nucl. Phys. B 656, 165 (2003)

    Article  ADS  Google Scholar 

  36. D. Boer, P. Mulders, F. Pijlman, Nucl. Phys. B 667, 201 (2003)

    Article  ADS  Google Scholar 

  37. A. Manohar, Phys. Rev. Lett. 65, 2511 (1990)

    Article  ADS  Google Scholar 

  38. A. Manohar, Phys. Rev. Lett. 66, 289 (1991)

    Article  ADS  Google Scholar 

  39. Y. Hatta, Phys. Rev. D 84, 041701(R) (2011)

    Article  ADS  Google Scholar 

  40. M. Burkardt, Phys. Rev. D 88, 014014 (2013)

    Article  ADS  Google Scholar 

  41. W.-M. Zhang, A. Harindranath, Phys. Lett. B 314, 223 (1993)

    Article  ADS  Google Scholar 

  42. M. Ornigotti, A. Aiello, Opt. Express 22, 6586 (2014)

    Article  ADS  Google Scholar 

  43. L.W. Allen, M. Beijersbergen, R. Spreeuw, J. Woerdman, Phys. Rev. A 45, 8185 (1992)

    Article  ADS  Google Scholar 

  44. M. Wakamatsu, Y. Kitadono, L. Zou, P.-M. Zhang, Ann. Phys. 397, 259 (2018)

    Article  ADS  Google Scholar 

  45. F. Belinfante, Physica 6, 887 (1939)

    Article  ADS  MathSciNet  Google Scholar 

  46. F. Belinfante, Physica 7, 449 (1940)

    Article  ADS  MathSciNet  Google Scholar 

  47. L. Rosenfeld, Mem. Acad. R. Belg. Sci. 18, 1 (1940)

    Google Scholar 

  48. M. Wakamatsu, Y. Kitadono, P.-M. Zhang, Ann. Phys. 392, 287 (2018)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masashi Wakamatsu.

Additional information

Communicated by R. Alkofer

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Author’s comment: All data generated during this study are contained in this published article.]

Publisher’s Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wakamatsu, M. A still unsettled issue in the nucleon spin decomposition problem: On the role of surface terms and gluon topology. Eur. Phys. J. A 55, 123 (2019). https://doi.org/10.1140/epja/i2019-12800-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2019-12800-9

Navigation