Skip to main content
Log in

Low-lying dipole and quadrupole states

Are they new excitation modes?

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract.

We briefly review the main properties of the low-lying dipole states known as Pygmy Dipole Resonance trying to select the main one which could define this new excitation mode. A good candidate seems to be the isoscalar-isovector mixing. This mixing, more effective at the nuclear surface, has been proved by both theoretical and experimental investigations. On the other hand, the study of the low-lying quadrupole states does not seem to provide clear evidence for a new excitation mode. The theoretical approaches used to investigate the quadrupole response reach different conclusions and the experimental data can only clearly establish the multipolarities of the states and their one-phonon character. Moreover, cross section calculations are not sensitive enough to disentangle between quadrupole states which are considered, in one of the theoretical approach, as due to different excitation mode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.N. Harakeh, A. van der Woude, Giant Resonances: Fundamental high-frequency modes of nuclear excitation (Oxford University Press, Oxford 2001)

  2. F. Catara, E.G. Lanza, M.A. Nagarajan, A. Vitturi, Nucl. Phys. A 624, 449 (1997)

    ADS  Google Scholar 

  3. F. Catara, E.G. Lanza, M.A. Nagarajan, A. Vitturi, Nucl. Phys. A 614, 86 (1997)

    ADS  Google Scholar 

  4. N. Paar, D. Vretenar, E. Khan, G. Colò, Rep. Prog. Phys. 70, 691 (2007)

    ADS  Google Scholar 

  5. D. Savran, T. Aumann, A. Zilges, Prog. Part. Nucl. Phys. 70, 210 (2013)

    ADS  Google Scholar 

  6. T. Aumann, T. Nakamura, Phys. Scr. T 152, 014012 (2013)

    ADS  Google Scholar 

  7. A. Bracco, F.C.L. Crespi, E.G. Lanza, Eur. Phys. J. A 51, 99 (2015)

    ADS  Google Scholar 

  8. A. Bracco, E.G. Lanza, A. Tamii, Prog. Part. Nucl. Phys. 106, 360 (2019)

    ADS  Google Scholar 

  9. LAND Collaboration (A. Klimkiewicz et al.), Phys. Rev. C 76, 051603(R) (2007)

    Google Scholar 

  10. A. Carbone, G. Coló, A. Bracco, Li-Gang Cao, P.F. Bortignon, F. Camera, O. Wieland, Phys. Rev. C 81, 041301(R) (2010)

    ADS  Google Scholar 

  11. S. Goriely, E. Khan, M. Samyn, Nucl. Phys. A 739, 331 (2004)

    ADS  Google Scholar 

  12. E. Litvinova, H.P. Loens, K. Langanke, G. Martinez-Pinedo, T. Rauscher, P. Ring, F.-K. Thielemann, V. Tselyaev, Nucl. Phys. A 823, 26 (2009)

    ADS  Google Scholar 

  13. N. Tsoneva, S. Goriely, H. Lenske, R. Schwengner, Phys. Rev. C 91, 044318 (2015)

    ADS  Google Scholar 

  14. G.A. Bartholomew, Annu. Rev. Nucl. Sci. 11, 259 (1961)

    ADS  Google Scholar 

  15. J.S. Brzosko et al., Can. J. Phys. 47, 2849 (1969)

    ADS  Google Scholar 

  16. R. Mohen, M. Danos, L.C. Biedenharn, Phys. Rev. C 3, 1740 (1971)

    ADS  Google Scholar 

  17. H. Steinwedel, J.H.D. Jensen, Z. Naturforsch. 5a, 413 (1950)

    ADS  Google Scholar 

  18. Y. Suzuki, K. Ikeda, H. Sato, Prog. Theor. Phys. 83, 180 (1990)

    ADS  Google Scholar 

  19. M. Igashira, H. Kitazawa, M. Shimizu, H. Komano, N. Yamamuro, Nucl. Phys. A 457, 301 (1986)

    ADS  Google Scholar 

  20. M. Goldhaber, E. Teller, Phys. Rev. 74, 1046 (1948)

    ADS  Google Scholar 

  21. P. Van Isacker, M.A. Nagarajan, D.D. Warner, Phys. Rev. C 45, R13 (1992)

    ADS  Google Scholar 

  22. S. Peru, H. Goutte, Phys. Rev. C 77, 044313 (2008)

    ADS  Google Scholar 

  23. M. Martini, S. Peru, M. Dupuis, Phys. Rev. C 83, 034309 (2011)

    ADS  Google Scholar 

  24. K. Yoshida, N. Van Giai, Phys. Rev. C 78, 064316 (2008)

    ADS  Google Scholar 

  25. K. Yoshida, T. Nakatsukasa, Phys. Rev. C 88, 034309 (2013)

    ADS  Google Scholar 

  26. J. Piekarewicz, Phys. Rev. C 83, 034319 (2011)

    ADS  Google Scholar 

  27. D. Vretenar, Y.F. Niu, N. Paar, J. Meng, Phys. Rev. C 85, 044317 (2012)

    ADS  Google Scholar 

  28. J. Liang, Li-Gang Cao, Zhong-Yu Ma, Phys. Rev. C 75, 054320 (2007)

    ADS  Google Scholar 

  29. N. Paar, P. Ring, T. Nikšić, D. Vretenar, Phys. Rev. C 67, 034312 (2003)

    ADS  Google Scholar 

  30. N. Paar, Y.F. Niu, D. Vretenar, J. Meng, Phys. Rev. Lett. 103, 032502 (2009)

    ADS  Google Scholar 

  31. D. Peña, E. Khan, P. Ring, Phys. Rev. C 79, 034311 (2009)

    ADS  Google Scholar 

  32. V.G. Soloviev, Theory of Atomic Nucleus: quasiparticles and phonons (Institute of Physics, Bristol, 1992)

  33. C. Bertulani, Y.Yu. Ponomarev, Phys. Rep. 321, 139 (1999)

    ADS  Google Scholar 

  34. V.I. Tselyaev, Phys. Rev. C 75, 024306 (2007)

    ADS  Google Scholar 

  35. E. Litvinova, P. Ring, V. Tselyaev, Phys. Rev. C 78, 014312 (2008)

    ADS  Google Scholar 

  36. E. Litvinova, P. Ring, V. Tselyaev, K. Langanke, Phys. Rev. C 79, 054312 (2009)

    ADS  Google Scholar 

  37. E. Litvinova, P. Ring, V. Tselyaev, Phys. Rev. Lett. 105, 022502 (2010)

    ADS  Google Scholar 

  38. G. Colò, L. Cao, N. Van Giai, L. Capelli, Comput. Phys. Comm. 184, 142 (2013)

    ADS  Google Scholar 

  39. N. Van Giai, H. Sagawa, Phys. Lett. B 106, 379 (1981)

    ADS  Google Scholar 

  40. N. Van Giai, N. Sagawa, Nucl. Phys. A 371, 1 (1981)

    ADS  Google Scholar 

  41. P. Papakostantinou, H. Hergert, R. Roth, Phys. Rev. C 92, 034311 (2015)

    ADS  Google Scholar 

  42. E.G. Lanza, F. Catara, D. Gambacurta, M.V. Andres, Ph. Chomaz, Phys. Rev. C 79, 054615 (2009)

    ADS  Google Scholar 

  43. E.G. Lanza, A. Vitturi, M.V. Andres, F. Catara, D. Gambacurta, Phys. Rev. C 84, 064602 (2011)

    ADS  Google Scholar 

  44. X. Roca-Maza, G. Pozzi, M. Brenna, K. Mizuyama, G. Colò, Phys. Rev. C 85, 024601 (2012)

    ADS  Google Scholar 

  45. E.G. Lanza, A. Vitturi, M.V. Andres, Phys. Rev. 91, 054607 (2015)

    ADS  Google Scholar 

  46. D. Vretener, N. Paar, P. Ring, T. Nikšić, Phys. Rev. C 65, 021301 (2002)

    ADS  Google Scholar 

  47. A. Repko, P.-G. Reinhard, V.O. Nesterenko, J. Kvasil, Phys. Rev. C 87, 024305 (2013)

    ADS  Google Scholar 

  48. V. Nesterenko, J. Kvasil, A. Repko, W. Kleinig, P.-G. Reinhard, Phys. At. Nucl. 79, 842 (2016)

    Google Scholar 

  49. N. Nakatsuka et al., Phys. Lett. B 768, 387 (2017)

    ADS  Google Scholar 

  50. J. Endres et al., Phys. Rev. Lett. 105, 212503 (2010)

    ADS  Google Scholar 

  51. E.G. Lanza, A. Vitturi, E. Litvinova, D. Savran, Phys. Rev. C 89, 041601(R) (2014)

    ADS  Google Scholar 

  52. K. Govaert et al., Phys. Rev. C 57, 2229 (1998)

    ADS  Google Scholar 

  53. O. Wieland et al., Phys. Rev. Lett. 102, 092502 (2009)

    ADS  Google Scholar 

  54. D.M. Rossi et al., Phys. Rev. Lett. 111, 242503 (2013)

    ADS  Google Scholar 

  55. N.S. Martorana et al., Phys. Lett. B 782, 112 (2018)

    ADS  Google Scholar 

  56. N. Tsoneva, H. Lenske, Phys. Lett. B 695, 174 (2011)

    ADS  Google Scholar 

  57. L. Pellegri et al., Phys. Rev. C 92, 014330 (2015)

    ADS  Google Scholar 

  58. M. Spieker et al., Phys. Lett. B 752, 102 (2016)

    ADS  Google Scholar 

  59. G.R. Satchler, W.G. Love, Phys. Rep. 55, 183 (1979)

    ADS  Google Scholar 

  60. G. Bertsch, J. Horysowicz, H. McManus, W.G. Love, Nucl. Phys. A 284, 399 (1977)

    ADS  Google Scholar 

  61. E. Yüksel, G. Coló, E. Khan, Y.F. Niu, Phys. Rev. C 97, 064308 (2018)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. G. Lanza.

Additional information

Communicated by N. Alamanos

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: All data generated during this study are contained in this published article.]

Publisher’s Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lanza, E.G., Pellegri, L., Andrés, M.V. et al. Low-lying dipole and quadrupole states. Eur. Phys. J. A 55, 235 (2019). https://doi.org/10.1140/epja/i2019-12797-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2019-12797-y

Navigation