Skip to main content
Log in

Nuclear response in a finite-temperature relativistic framework

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract.

A thermal extension of the relativistic nuclear field theory is formulated for the nuclear response. The Bethe-Salpeter equation (BSE) with the time-dependent kernel for the particle-hole response is treated within the Matsubara Green’s function formalism. We show that, with the help of a temperature-dependent projection operator on the subspace of the imaginary time (time blocking), it is possible to reduce the BSE for the nuclear response function to a single frequency variable equation also at finite temperature. The approach is implemented self-consistently in the framework of quantum hadrodynamics based on the meson-nucleon Lagrangian. The method is applied to the monopole, dipole and quadrupole response of 48Ca and to the dipole response of the tin isotopes 100, 120, 132Sn, in particular, to a study of the evolution of nuclear collective oscillations with temperature. The article is dedicated to the memory of Pier Francesco Bortignon and devoted to the developments related to his pioneering ideas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. A. Bohr, B.R. Mottelson, Nuclear Structure, Vol. 1 (World Scientific, 1969)

  2. A. Bohr, B.R. Mottelson, Nuclear Structure, Vol. 2 (Benjamin, New York, 1975)

  3. R.A. Broglia, P.F. Bortignon, Phys. Lett. B 65, 221 (1976)

    ADS  Google Scholar 

  4. P.F. Bortignon, R. Broglia, D. Bes, R. Liotta, Phys. Rep. 30, 305 (1977)

    ADS  Google Scholar 

  5. P.F. Bortignon, R.A. Broglia, D.R. Bes, Phys. Lett. B 76, 153 (1978)

    ADS  Google Scholar 

  6. P.F. Bortignon, R.A. Broglia, Phys. Lett. B 102, 303 (1981)

    ADS  Google Scholar 

  7. G. Bertsch, P. Bortignon, R. Broglia, Rev. Mod. Phys. 55, 287 (1983)

    ADS  Google Scholar 

  8. C. Mahaux, P. Bortignon, R. Broglia, C. Dasso, Phys. Rep. 120, 1 (1985)

    ADS  Google Scholar 

  9. P. Bortignon, R. Broglia, G. Bertsch, J. Pacheco, Nucl. Phys. A 460, 149 (1986)

    ADS  Google Scholar 

  10. P.F. Bortignon, C.H. Dasso, Phys. Rev. C 56, 574 (1997)

    ADS  Google Scholar 

  11. G. Colò, P.F. Bortignon, Nucl. Phys. A 696, 427 (2001)

    ADS  Google Scholar 

  12. R. Broglia, P. Bortignon, A. Bracco, Prog. Part. Nucl. Phys. 28, 517 (1992)

    ADS  Google Scholar 

  13. N. Giovanardi, P.F. Bortignon, R.A. Broglia, W. Huang, Phys. Rev. Lett. 77, 24 (1996)

    ADS  Google Scholar 

  14. P. Donati, N. Giovanardi, P.F. Bortignon, R.A. Broglia, Phys. Lett. B 383, 15 (1996)

    ADS  Google Scholar 

  15. N. Giovanardi, P.F. Bortignon, R.A. Broglia, Nucl. Phys. A 641, 95 (1998)

    ADS  Google Scholar 

  16. W. Ormand, P. Bortignon, R. Broglia, T. Døssing, B. Lauritzen, Nucl. Phys. A 519, 61 (1990)

    ADS  Google Scholar 

  17. W.E. Ormand, P.F. Bortignon, R.A. Broglia, Phys. Rev. Lett. 77, 607 (1996)

    ADS  Google Scholar 

  18. P.F. Bortignon, A. Bracco, R.A. Broglia, Giant Resonances: Nuclear Structure at Finite Temperature, Vol. 10 of Contemporary Concepts in Physics (CRC Press, 1998)

  19. P.F. Bortignon, R.A. Broglia, Eur. Phys. J. A 52, 280 (2016)

    ADS  Google Scholar 

  20. P.F. Bortignon, R.A. Broglia, Eur. Phys. J. A 52, 64 (2016)

    ADS  Google Scholar 

  21. R.A. Broglia, P.F. Bortignon, F. Barranco, E. Vigezzi, A. Idini, G. Potel, Phys. Scr. 91, 063012 (2016)

    ADS  Google Scholar 

  22. G. Coló, P.F. Bortignon, G. Bocchi, Phys. Rev. C 95, 034303 (2017)

    ADS  Google Scholar 

  23. J. Gaardhøje, C. Ellegaard, B. Herskind, S. Steadman, Phys. Rev. Lett. 53, 148 (1984)

    ADS  Google Scholar 

  24. J. Gaardhøje, C. Ellegaard, B. Herskind, R. Diamond, M. Deleplanque, G. Dines, A. Macchiavelli, F. Stephens, Phys. Rev. Lett. 56, 1783 (1986)

    ADS  Google Scholar 

  25. A. Bracco, J. Gaardhøje, A. Bruce, J. Garrett, B. Herskind, M. Pignanelli, D. Barneoud, H. Nifenecker, J. Pinston, C. Ristori et al., Phys. Rev. Lett. 62, 2080 (1989)

    ADS  Google Scholar 

  26. E. Ramakrishnan, T. Baumann, A. Azhari, R. Kryger, R. Pfaff, M. Thoennessen, S. Yokoyama, J. Beene, M. Halbert, P. Mueller et al., Phys. Rev. Lett. 76, 2025 (1996)

    ADS  Google Scholar 

  27. M. Mattiuzzi, A. Bracco, F. Camera, W.E. Ormand, J.J. Gaardhøje, A. Maj, B. Million, M. Pignanelli, T. Tveter, Nucl. Phys. A 612, 262 (1997)

    ADS  Google Scholar 

  28. P. Heckman, D. Bazin, J. Beene, Y. Blumenfeld, M. Chromik, M. Halbert, J. Liang, E. Mohrmann, T. Nakamura, A. Navin et al., Phys. Lett. B 555, 43 (2003)

    ADS  Google Scholar 

  29. D. Santonocito, Y. Blumenfeld, in Dynamics and Thermodynamics with Nuclear Degrees of Freedom (Springer, 2006) pp. 183--202

  30. O. Wieland et al., Phys. Rev. Lett. 97, 012501 (2006)

    ADS  Google Scholar 

  31. A. Bracco, F. Camera, O. Wieland, W.E. Ormand, Mod. Phys. Lett. A 22, 2479 (2007)

    ADS  Google Scholar 

  32. D. Savran, T. Aumann, A. Zilges, Prog. Part. Nucl. Phys. 70, 210 (2013)

    ADS  Google Scholar 

  33. J. Isaak et al., Phys. Lett. B 788, 225 (2019)

    ADS  Google Scholar 

  34. A. Voinov, E. Algin, U. Agvaanluvsan, T. Belgya, R. Chankova, M. Guttormsen, G. Mitchell, J. Rekstad, A. Schiller, S. Siem, Phys. Rev. Lett. 93, 142504 (2004)

    ADS  Google Scholar 

  35. M. Wiedeking, L. Bernstein, M. Krtička, D. Bleuel, J. Allmond, M. Basunia, J. Burke, P. Fallon, R. Firestone, B. Goldblum et al., Phys. Rev. Lett. 108, 162503 (2012)

    ADS  Google Scholar 

  36. M. Mumpower, R. Surman, G. McLaughlin, A. Aprahamian, Prog. Part. Nucl. Phys. 86, 86 (2016)

    ADS  Google Scholar 

  37. F. Minato, K. Hagino, Phys. Rev. C 80, 065808 (2009)

    ADS  Google Scholar 

  38. A.A. Dzhioev, A.I. Vdovin, V.Yu. Ponomarev et al., Phys. Rev. C 81, 015804 (2010)

    ADS  Google Scholar 

  39. Y.F. Niu, N. Paar, D. Vretenar et al., Phys. Rev. C 83, 045807 (2011)

    ADS  Google Scholar 

  40. A. Aprahamian, in Proceedings for the FRIB Theory Alliance workshop “FRIB and the GW170817 kilonova”, 16–27 July 2018, Facility for Rare Isotope Beams, Michigan State University, East Lansing, MI USA, arXiv:1809.00703

  41. P. Ring, L.M. Robledo, J.L. Egido, M. Faber, Nucl. Phys. A 419, 261 (1984)

    ADS  Google Scholar 

  42. Y.F. Niu, N. Paar, D. Vretenar, J. Meng, Phys. Lett. B 681, 315 (2009)

    ADS  Google Scholar 

  43. E. Yüksel, G. Colò, E. Khan, Y.F. Niu, K. Bozkurt, Phys. Rev. C 96, 024303 (2017)

    ADS  Google Scholar 

  44. E. Litvinova, S. Kamerdzhiev, V. Tselyaev, Phys. At. Nucl. 66, 558 (2003)

    Google Scholar 

  45. E. Khan, N. Van Giai, M. Grasso, Nucl. Phys. A 731, 311 (2004)

    ADS  Google Scholar 

  46. E. Litvinova, N. Belov, Phys. Rev. C 88, 031302 (2013)

    ADS  Google Scholar 

  47. J. Dukelsky, G. Röpke, P. Schuck, Nucl. Phys. A 628, 17 (1998)

    ADS  Google Scholar 

  48. D. Lacroix, P. Chomaz, S. Ayik, Phys. Rev. C 58, 2154 (1998)

    ADS  Google Scholar 

  49. S. Adachi, P. Schuck, Nucl. Phys. A 496, 485 (1989)

    ADS  Google Scholar 

  50. C. Yannouleas, S. Jang, Nucl. Phys. A 455, 40 (1986)

    ADS  Google Scholar 

  51. A.N. Storozhenko, A.I. Vdovin, A. Ventura, A.I. Blokhin, Phys. Rev. C 69, 064320 (2004)

    ADS  Google Scholar 

  52. D. Kusnezov, Y. Alhassid, K. Snover, Phys. Rev. Lett. 81, 542 (1998)

    ADS  Google Scholar 

  53. E. Litvinova, P. Ring, Phys. Rev. C 73, 044328 (2006)

    ADS  Google Scholar 

  54. E. Litvinova, P. Ring, V. Tselyaev, Phys. Rev. C 75, 064308 (2007)

    ADS  Google Scholar 

  55. E. Litvinova, P. Ring, V. Tselyaev, Phys. Rev. C 78, 014312 (2008)

    ADS  Google Scholar 

  56. E. Litvinova, P. Ring, V. Tselyaev, Phys. Rev. C 88, 044320 (2013)

    ADS  Google Scholar 

  57. E. Litvinova, Phys. Rev. C 91, 034332 (2015)

    ADS  Google Scholar 

  58. E. Litvinova, Phys. Lett. B 755, 138 (2016)

    ADS  Google Scholar 

  59. C. Robin, E. Litvinova, Eur. Phys. J. A 52, 205 (2016)

    ADS  Google Scholar 

  60. C. Robin, E. Litvinova, Phys. Rev. C 98, 051301 (2018)

    ADS  Google Scholar 

  61. E. Litvinova, P. Ring, V. Tselyaev, K. Langanke, Phys. Rev. C 79, 054312 (2009)

    ADS  Google Scholar 

  62. E. Litvinova, H. Loens, K. Langanke, G. Martinez-Pinedo, T. Rauscher, P. Ring, F.K. Thielemann, V. Tselyaev, Nucl. Phys. A 823, 26 (2009)

    ADS  Google Scholar 

  63. E. Litvinova, P. Ring, V. Tselyaev, Phys. Rev. Lett. 105, 022502 (2010)

    ADS  Google Scholar 

  64. J. Endres, E. Litvinova, D. Savran, P.A. Butler, M.N. Harakeh, S. Harissopulos, R.D. Herzberg, R. Krücken, A. Lagoyannis, N. Pietralla et al., Phys. Rev. Lett. 105, 212503 (2010)

    ADS  Google Scholar 

  65. A. Tamii, I. Poltoratska, P. von Neumann-Cosel, Y. Fujita, T. Adachi, C.A. Bertulani, J. Carter, M. Dozono, H. Fujita, K. Fujita et al., Phys. Rev. Lett. 107, 062502 (2011)

    ADS  Google Scholar 

  66. R. Massarczyk, R. Schwengner, F. Dönau, E. Litvinova, G. Rusev, R. Beyer, R. Hannaske, A. Junghans, M. Kempe, J.H. Kelley et al., Phys. Rev. C 86, 014319 (2012)

    ADS  Google Scholar 

  67. E. Lanza, A. Vitturi, E. Litvinova, D. Savran, Phys. Rev. C 89, 041601 (2014)

    ADS  Google Scholar 

  68. I. Poltoratska, R. Fearick, A. Krumbholz, E. Litvinova, H. Matsubara, P. von Neumann-Cosel, V.Y. Ponomarev, A. Richter, A. Tamii, Phys. Rev. C 89, 054322 (2014)

    ADS  Google Scholar 

  69. B. Özel-Tashenov, J. Enders, H. Lenske, A. Krumbholz, E. Litvinova, P. von Neumann-Cosel, I. Poltoratska, A. Richter, G. Rusev, D. Savran et al., Phys. Rev. C 90, 024304 (2014)

    ADS  Google Scholar 

  70. I.A. Egorova, E. Litvinova, Phys. Rev. C 94, 034322 (2016)

    ADS  Google Scholar 

  71. E. Litvinova, H. Wibowo, Phys. Rev. Lett. 121, 082501 (2018)

    ADS  Google Scholar 

  72. H. Wibowo, E. Litvinova, Phys. Rev. C 100, 024307 (2019) arXiv:1810.01456

    ADS  Google Scholar 

  73. H.M. Sommermann, Ann. Phys. 151, 163 (1983)

    ADS  Google Scholar 

  74. D. Vretenar, A.V. Afanasjev, G.A. Lalazissis, P. Ring, Phys. Rep. 409, 101 (2005)

    ADS  Google Scholar 

  75. G. Lalazissis, J. König, P. Ring, Phys. Rev. C 55, 540 (1997)

    ADS  Google Scholar 

  76. A.A. Abrikosov, L.P. Gorkov, I.E. Dzyaloshinski, Methods of Quantum Field Theory in Statistical Physics (Pergamon Press Ltd., 1965)

  77. P. Schuck, M. Tohyama, Eur. Phys. J. A 52, 307 (2016)

    ADS  Google Scholar 

  78. S.P. Kamerdzhiev, G.Y. Tertychny, V.I. Tselyaev, Phys. Part. Nucl. 28, 134 (1997)

    Google Scholar 

  79. V. Tselyaev, Sov. J. Nucl. Phys. 50, 780 (1989)

    Google Scholar 

  80. V.I. Tselyaev, Phys. Rev. C 88, 054301 (2013)

    ADS  Google Scholar 

  81. E. Litvinova, V. Tselyaev, Phys. Rev. C 75, 054318 (2007)

    ADS  Google Scholar 

  82. G. Lalazissis, Phys. Rev. C 55, 540 (1997)

    ADS  Google Scholar 

  83. M.N. Harakeh, A. Van der Woude, Giant Resonances: Fundamental High-Frequency Modes of Nuclear Excitation (Oxford University Press, 2001)

  84. U. Garg, G. Coló, Prog. Part. Nucl. Phys. 101, 55 (2018)

    ADS  Google Scholar 

  85. X. Roca-Maza, N. Paar, Prog. Part. Nucl. Phys. 101, 96 (2018) arXiv:1804.06256

    ADS  Google Scholar 

  86. S. Fultz, B. Berman, J. Caldwell, R. Bramblett, M. Kelly, Phys. Rev. 186, 1255 (1969)

    ADS  Google Scholar 

  87. P. Bonche, S. Levit, D. Vautherin, Nucl. Phys. A 427, 278 (1984)

    ADS  Google Scholar 

  88. P. Bonche, S. Levit, D. Vautherin, Nucl. Phys. A 436, 265 (1985)

    ADS  Google Scholar 

  89. R. Lisboa, M. Malheiro, B.V. Carlson, Phys. Rev. C 93, 024321 (2016)

    ADS  Google Scholar 

  90. W. Zhang, Y. Niu, Phys. Rev. C 96, 054308 (2017) 97

    ADS  Google Scholar 

  91. L. Landau, Sov. J. Exp. Theor. Phys. 5, 101 (1957)

    Google Scholar 

  92. M. Barranco, A. Polls, J. Martorell, Nucl. Phys. A 444, 445 (1985)

    ADS  Google Scholar 

  93. V.I. Tselyaev, Phys. Rev. C 75, 024306 (2007)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena Litvinova.

Additional information

Communicated by N. Alamanos

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: All data generated during this study are contained in this published article.]

Publisher’s Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Litvinova, E., Wibowo, H. Nuclear response in a finite-temperature relativistic framework. Eur. Phys. J. A 55, 223 (2019). https://doi.org/10.1140/epja/i2019-12771-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2019-12771-9

Navigation