Skip to main content
Log in

Transverse momentum distribution of charged hadrons based on wounded quark model

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract.

In nucleus-nucleus collisions, new particles are produced mainly through strong interactions among the constituents of the QCD medium. The search of a unified phenomenological model to understand this production mechanism is one of the main motivation behind the heavy ion experiments. A vast variety of data coming from nucleus-nucleus collision experiments put a stringent constraint on the particle production models. A unified and proper model must satisfy the various data regarding pseudorapidity distributions, transverse energy density distributions, transverse momentum distributions with respect to control parameters in different types of collisions at various energies simultaneously. Recently we proposed a new version of wounded quark model (WQM) which actually satisfies many points of this criteria. However, these kind of static initial model conditions have problem in calculating the transverse momentum distributions of charged hadrons. In this article, we have used the important ingredients of WQM like number of wounded quarks and number of quark-quark collisions to fit the transverse momentum spectra of charged hadrons. Based on the assumption of different mechanisms at different regions, i.e. different mechanisms for soft \( p_{T}\) and hard momentum part, we have proposed a parameterization made of two functions to calculate the transverse momentum spectra in different collisions at different energies ranging from higher RHIC to LHC. We hope that this study along with our recent work on WQM will become a more suitable choice as unified model for particle production in strong interaction, instead of wounded nucleon model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C.P. Singh, Phys. Rep. 236, 147 (1993)

    Article  ADS  Google Scholar 

  2. P. Braun-Munzinger, K. Redlich, J. Stachel, arXiv:nucl-th/0304013

  3. I.M. Dremin, J.W. Gary, Phys. Rep. 349, 301 (2001)

    Article  ADS  Google Scholar 

  4. J. Sollfrank, P. Huovinen, M. Kataja, P.V. Ruuskanen, M. Prakash, R. Venugopalan, Phys. Rev. C 55, 392 (1997)

    Article  ADS  Google Scholar 

  5. N. Xu, Z. Xu, Nucl. Phys. A 715, 587 (2003)

    Article  ADS  Google Scholar 

  6. P. Braun-Munzinger, J. Stachel, J.P. Wessels, N. Xu, Phys. Lett. B 344, 43 (1995)

    Article  ADS  Google Scholar 

  7. P. Braun-Munzinger, J. Stachel, J.P. Wessels, N. Xu, Phys. Lett. B 365, 1 (1996)

    Article  ADS  Google Scholar 

  8. T. Sjöstrand, M. van Zijl, Phys. Rev. D 36, 2019 (1987)

    Article  ADS  Google Scholar 

  9. K. Kinoshita, H. Noda, T. Tashiro, M. Mizouchi, Z. Phys. C Part. Fields 4, 103 (1980)

    Article  Google Scholar 

  10. STAR Collaboration (B.I. Abelev et al.), Phys. Rev. C 79, 034909 (2009)

    Article  Google Scholar 

  11. PHENIX Collaboration (A. Adare et al.), Phys. Rev. C 83, 024909 (2011)

    Article  Google Scholar 

  12. T.S. Biro, B. Muller, Phys. Lett. B 578, 78 (2004)

    Article  ADS  Google Scholar 

  13. G. Wilk, Z. Wlodarczyk, Eur. Phys. J. A 40, 299 (2009)

    Article  ADS  Google Scholar 

  14. T. Osada, G. Wilk, Phys. Rev. C 77, 044903 (2008)

    Article  ADS  Google Scholar 

  15. W.M. Alberico, A. Lavagno, P. Quarati, Eur. Phys. J. C 12, 499 (2000)

    Article  ADS  Google Scholar 

  16. B. De, S. Bhattacharyya, G. Sau, S.K. Biswas, Int. J. Mod. Phys. E 16, 1687 (2007)

    Article  ADS  Google Scholar 

  17. PHENIX Collaboration (A. Adare et al.), Phys. Rev. C 83, 064903 (2011)

    Article  Google Scholar 

  18. CMS Collaboration (S. Chatrchyan et al.), Eur. Phys. J. C 72, 2164 (2012)

    Article  ADS  Google Scholar 

  19. C. Tsallis, J. Stat. Phys. 52, 479 (1988)

    ADS  Google Scholar 

  20. C. Tsallis, R.S. Mendes, A.R. Plastino, Physica A 261, 534 (1998)

    Article  ADS  Google Scholar 

  21. H. Zheng, L. Zhu, Adv. High Energy Phys. 2015, 180491 (2015)

    Article  Google Scholar 

  22. Kapil Saraswat, Prashant Shukla, Venktesh Singh, J. Phys. Commun. 2, 035003 (2018)

    Article  Google Scholar 

  23. UA 2 Collaboration (R. Ansari et al.), Z. Phys. C 36, 175 (1987)

    Article  Google Scholar 

  24. UA 2 Collaboration (J.A. Appel et al.), Phys. Lett. B 165, 441 (1985)

    Article  ADS  Google Scholar 

  25. T. Akesson, H. Bengtsson, Phys. Lett. B 120, 233 (1983)

    Article  ADS  Google Scholar 

  26. A. Kumar, P.K. Srivastava, B.K. Singh, C.P. Singh, Adv. High Energy Phys. 2013, 352180 (2013)

    Article  Google Scholar 

  27. A. Kumar, B.K. Singh, P.K. Srivastava, C.P. Singh, Eur. Phys. J. Plus 128, 45 (2013)

    Article  Google Scholar 

  28. O.S.K. Chaturvedi, P.K. Srivastava, A. Kumar, B.K. Singh, Eur. Phys. J. Plus 131, 438 (2016)

    Article  Google Scholar 

  29. C.P. Singh, M. Shyam, S.K. Tuli, Phys. Rev. C 40, 1716 (1989)

    Article  ADS  Google Scholar 

  30. M. Shyam, C.P. Singh, S.K. Tuli, Phys. Lett. B 164, 189 (1985)

    Article  ADS  Google Scholar 

  31. C.P. Singh, M. Shyam, Phys. Lett. B 171, 125 (1986)

    Article  ADS  Google Scholar 

  32. O.S.K. Chaturvedi, P.K. Srivastava, A. Singh, B.K. Singh, Eur. Phys. J. Plus 132, 430 (2017)

    Article  Google Scholar 

  33. O.S.K. Chaturvedi, P.K. Srivastava, Arpit Singh, B.K. Singh, Eur. Phys. J. A 54, 46 (2018)

    Article  ADS  Google Scholar 

  34. S. Eremin, S. Voloshin, Phys. Rev. C 67, 064905 (2003)

    Article  ADS  Google Scholar 

  35. PHENIX Collaboration (A. Adare et al.), Phys. Rev. C 93, 024901 (2016)

    Article  ADS  Google Scholar 

  36. PHENIX Collaboration (S.S. Adler et al.), Phys. Rev. C 89, 044905 (2014)

    Article  ADS  Google Scholar 

  37. STAR Collaboration (J. Adams et al.), Phys. Rev. C 72, 014904 (2005)

    Article  Google Scholar 

  38. STAR Collaboration (B.I. Abelev et al.), Phys. Rev. C 81, 044902 (2010)

    Article  ADS  Google Scholar 

  39. STAR Collaboration (J. Adams et al.), Phys. Rev. Lett. 92, 052302 (2004)

    Article  Google Scholar 

  40. STAR Collaboration (J. Adams et al.), Phys. Rev. Lett. 95, 022301 (2005)

    Article  Google Scholar 

  41. P. Bozek, W. Broniowski, Phys. Rev. C 96, 014904 (2017)

    Article  ADS  Google Scholar 

  42. A. Bialas, W. Czyz, L. Lesniak, Phys. Rev. D 25, 9 (1992)

    Google Scholar 

  43. V.V. Anisovich, V.M. Shekhter, Nucl. Phys. B 55, 455 (1973)

    Article  ADS  Google Scholar 

  44. V.V. Anisovich, M.N. Kobrinskii, J. Nyiri, Yu.M. Shabelskii, Sov. Phys. Usp. 27, 12 (1984)

    Article  Google Scholar 

  45. J. Nyiri, Int. J. Mod. Phys. A 18, 2403 (2003)

    Article  ADS  Google Scholar 

  46. H.J. Lipkin, Phys. Lett. B 116, 175 (1982)

    Article  ADS  Google Scholar 

  47. S. Fernbach, R. Serber, T.B. Taylor, Phys. Rev. 75, 1352 (1949)

    Article  ADS  Google Scholar 

  48. T.F. Hoang, B. Cork, H.J. Crawford, Z. Phys. C 29, 611 (1985)

    Article  ADS  Google Scholar 

  49. N. Armesto, D.A. Derkach, G.A. Feofilov, Phys. At. Nucl. 71, 2087 (2008)

    Article  Google Scholar 

  50. A. Capella, U.P. Sukhatme, C.-I. Tan, J. Tran Thanh Van, Phys. Lett. B 81, 68 (1979)

    Article  ADS  Google Scholar 

  51. A.B. Kaidalov, Phys. Lett. B 116, 459 (1982)

    Article  ADS  Google Scholar 

  52. V.A. Abramovskii, V.N. Gribov, O.V. Kancheli, Sov. J. Nucl. Phys. 18, 308 (1974)

    Google Scholar 

  53. A.B. Kaidalov, K.A. Ter-Martirosyan, Phys. Lett. B 117, 247 (1982)

    Article  ADS  Google Scholar 

  54. A.B. Kaidolov, Sov. J. Nucl. Phys. 45, 902 (1987)

    Google Scholar 

  55. Yu.M. Shabelski, Z. Phys. C 57, 409 (1993)

    Article  ADS  Google Scholar 

  56. J. Schwinger, Phys. Rev. 82, 664 (1951)

    Article  ADS  MathSciNet  Google Scholar 

  57. STAR Collaboration (J. Adams et al.), Phys. Rev. Lett. 91, 172302 (2003)

    Article  Google Scholar 

  58. CMS Collaboration (S. Chatrchyan et al.), Eur. Phys. J. C 72, 1945 (2012)

    Article  ADS  Google Scholar 

  59. CMS Collaboration (V. Khachatryan et al.), J. High Energy Phys. 2017, 39 (2017)

    Google Scholar 

  60. PHOBOS Collaboration (B. Alver et al.), Phys. Rev. Lett. 96, 212301 (2006)

    Article  Google Scholar 

  61. ALICE Collaboration (B. Abelev et al.), Phys. Lett. B 720, 52 (2013)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arpit Singh.

Additional information

Communicated by G. Torrieri

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: All the data generated during this study are contained in this article. Apart from the experimental data, which is already present online, the data generated in this study is available in table 1.]

Publisher’s Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Srivastava, P.K., Singh, A., Chaturvedi, O.S.K. et al. Transverse momentum distribution of charged hadrons based on wounded quark model. Eur. Phys. J. A 55, 69 (2019). https://doi.org/10.1140/epja/i2019-12741-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2019-12741-3

Navigation