Skip to main content

Advertisement

Log in

Nuclear response functions with low-momentum interactions

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract.

Linear density response functions for nuclear matter are calculated with separable 1S0 and 3S1 2-nucleon interactions obtained from experimental phase-shifts by inverse scattering techniques. It has been shown that results of nuclear matter binding energy Brueckner calculations with these potentials agree closely with those using realistic Bonn interactions. It has also been shown that low-momentum versions give binding energies (nearly) independent of momentum cut-offs \(\Lambda \geq \sim 2\) fm-1. Shown here is that the \(\Lambda = 2\) rank-one version of the separable interaction (for the S-states) yields a near agreement between a second-order and an all-order (Brueckner) binding energy calculation. Second order calculations of response functions are then made with this version using a method that Kwong and Bonitz used for the Coulomb gas. It is based on time-evolving two-time Green’s functions by Kadanoff-Baym (KB) equations. The effect of correlations, going beyond the conventional HF+RPA method, is included by “dressing” the Green’s function propagators with time-dependent complex self-energies in addition to the real HF-field. It would be of interest to see if the calculated response is also, like the binding energy, independent of cut-offs larger than \(\sim 2\) fm-1. That would require using separable potentials of a higher rank, not accommodated by the present computer program. Some results with a 1.5 fm-1 cut-off are however also shown below together with those with a 2.0 fm-1 cut-off. The KB-equations are time-evolved until the nuclear medium is fully correlated. The time-dependent density response to an external perturbation is then registered and Fourier transformed to obtain energy-dependent density response functions. Most previous calculations have been made with in-medium effective (e.g., Gogny or Skyrme) interactions. The medium dependence is in the present calculations contained in the second-order terms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Margueron, J. Navarro, P. Blottiau, Phys. Rev. C 70, 028801 (2004)

    Article  ADS  Google Scholar 

  2. Naoki Iwamoto, C.J. Pethick, Phys. Rev. D 25, 313 (1982)

    Article  ADS  Google Scholar 

  3. Paulo F. Bedaque, Sanjay Reddy, Srimoyee Sen, Neill G. Warrington, arXiv:nucl-th/1801.07077

  4. S. Reddy, M. Prakash, J. Lattimer, J. Pons, Phys. Rev. C 59, 2888 (1998)

    Article  ADS  Google Scholar 

  5. A. Sedrakian, A. Dieperink, Phys. Rev. D 62, 083002 (2000)

    Article  ADS  Google Scholar 

  6. D. Gogny, R. Padjen, Nucl. Phys. A 293, 365 (1977)

    Article  ADS  Google Scholar 

  7. C. Garcia-Recio, J. Navarro, Van Gai Nguyen, L.L. Salcedo, Ann. Phys. (N.Y.) 214, 340 (1992)

    Article  Google Scholar 

  8. J. Margueron, Nguyen Van Giai, J. Navarro, arXiv:nucl-th/0507053

  9. J. Margueron, J. Navarro, N. Van Giai, Phys. Rev. C 74, 015805 (2006)

    Article  ADS  Google Scholar 

  10. J. Margueron, J. Navarro, N. Van Giai, P. Schuck, Phys. Rev. C 77, 064306 (2008)

    Article  ADS  Google Scholar 

  11. Armen Sedrakian, Jochen Keller, arXiv:nucl-th/1001.0395

  12. Jochen Keller, Armen Sedrakian, arXiv:nucl-th/1205.6902

  13. D. Gambacurta, U. Lombardo, W. Zuo, Phys. At. Nucl. 74, 1424 (2011)

    Article  Google Scholar 

  14. A. Pastore, M. Martini, D. Davesne, K. Bennaceur, J. Meyer, Phys. Rev. C 86, 044308 (2012)

    Article  ADS  Google Scholar 

  15. A. Pastore, D. Davesne, J. Navarro, J. Phys. G 41, 055103 (2014)

    Article  ADS  Google Scholar 

  16. A. Pastore, D. Davesne, J. Navarro, Phys. Rep. 63, 1 (2015)

    Article  ADS  Google Scholar 

  17. A. De Pace, M. Martini, Phys. Rev. C 94, 024342 (2016)

    Article  ADS  Google Scholar 

  18. Takashi Nakatsukasa, arXiv:nucl-th/1701.01278

  19. J.M.C. Chen, J.W. Clark, D.G. Sandler, Z. Phys. A 305, 323 (1982)

    Article  Google Scholar 

  20. N.H. Kwong, D.G. Sandler, Phys. Lett. B 136, 1 (1984)

    Article  ADS  Google Scholar 

  21. A. Fabrocini, S. Fantoni, Nucl. Phys. A 503, 375 (1989)

    Article  ADS  Google Scholar 

  22. H.S. Köhler, Phys. Rev. C 46, 1687 (1992)

    Article  ADS  Google Scholar 

  23. H. Müther, A. Polls, Prog. Part. Nucl. Phys. 45, 243 (2000)

    Article  ADS  Google Scholar 

  24. S.V. Babu, G.E. Brown, Ann. Phys. (N.Y.) 77, 1 (1973)

    Article  ADS  Google Scholar 

  25. O. Sjöberg, Ann. Phys. (N.Y.) 77, 39 (1973)

    Article  ADS  Google Scholar 

  26. L.P. Kadanoff, G. Baym, Quantum Statistical Mechanics (Benjamin, New York, 1962)

  27. Gordon Baym, Leo P. Kadanoff, Phys. Rev. 124, 287 (1961)

    Article  ADS  MathSciNet  Google Scholar 

  28. Gordon Baym, Phys. Rev. 127, 1391 (1962)

    Article  MathSciNet  Google Scholar 

  29. P. Danielewicz, Ann. Phys. (N.Y.) 152, 305 (1984)

    Article  ADS  Google Scholar 

  30. H.S. Köhler, Phys. Rev. E 53, 3145 (1996)

    Article  ADS  Google Scholar 

  31. H.S. Köhler, N.H. Kwong, Hashim A. Yousif, Comput. Phys. Commun. 123, 123 (1999)

    Article  ADS  Google Scholar 

  32. C. Verdozzi, A. Wacker, C.-O. Almbladh, M. Bonitz, J. Phys.: Conf. Ser. 696, 011001 (2016)

    Google Scholar 

  33. Hossein Mahzoon, Pawel Danielewicz, Arnau Rios, arXiv:nucl-th/1805.06030

  34. N.H. Kwong, M. Bonitz, Phys. Rev. Lett. 84, 1768 (2000)

    Article  ADS  Google Scholar 

  35. H.S. Köhler, N.H. Kwong, arXiv:nucl-th/1311.4616

  36. H.S. Köhler, N.H. Kwong, arXiv:nucl-th/1601.05463

  37. H.S. Köhler, N.H. Kwong, J. Phys.: Conf. Ser. 6, 012011 (2016)

    Google Scholar 

  38. P. Bozek, Phys. Lett. B 579, 309 (2004)

    Article  ADS  Google Scholar 

  39. P. Bozek, J. Margueron, H. Müther, Ann. Phys. (N.Y.) 318, 245 (2005)

    Article  ADS  Google Scholar 

  40. M.G.E. Brand, K. Allaart, W.H. Dickhoff, Nucl. Phys. A 509, 1 (1990)

    Article  ADS  Google Scholar 

  41. Aurel Bulgac, Annu. Rev. Nucl. Part. Sci. 63, 97 (2013)

    Article  ADS  Google Scholar 

  42. P. Hohenberg, W. Kohn, Phys. Rev. 136, B864 (1964)

    Article  ADS  Google Scholar 

  43. I. Stetcu, A. Bulgac, P. Magierski, K.J. Roche, Phys. Rev. C 84, 051309(R) (2011)

    Article  ADS  Google Scholar 

  44. Mateusz Buraczynski, Alexandros Gezerlis, Phys. Rev. Lett. 116, 152501 (2016)

    Article  Google Scholar 

  45. Mateusz Buraczynski, Alexandros Gezerlis, Phys. Rev. C 95, 044309 (2017)

    Article  Google Scholar 

  46. N.H. Kwong, H.S. Köhler, Phys. Rev. C 55, 1650 (1997)

    Article  ADS  Google Scholar 

  47. H.S. Köhler, arXiv:nucl-th/0511030v2

  48. H.S. Köhler, S.A. Moszkowski, arXiv:nucl-th/0703093

  49. H.S. Köhler, Nucl. Phys. A 928, 9 (2014)

    Article  ADS  Google Scholar 

  50. R. Jastrow, Phys. Rev. 98, 165 (1951)

    Article  ADS  Google Scholar 

  51. K. Hebeler, S.K. Bogner, R.J. Furnstahl, A. Nogga, A. Schwenk, Phys. Rev. C 83, 031301 (2011)

    Article  ADS  Google Scholar 

  52. S. Bogner, R. Furnstahl, A. Schwenk, Prog. Part. Nucl. Phys. 65, 94 (2010)

    Article  ADS  Google Scholar 

  53. Y. Yamaguchi, Phys. Rev. 95, 1628 (1954)

    Article  ADS  Google Scholar 

  54. J. Haidenbauer, W. Plessas, Phys. Rev. C 30, 1822 (1984)

    Article  ADS  Google Scholar 

  55. M. Gourdin, A. Martin, Nuovo Cimento 6, 757 (1957)

    Article  Google Scholar 

  56. K. Chadan, P. Sabatier, Inverse Problems in Quantum Scattering Theory, 2nd edition (Springer, New York, 1992)

  57. F. Tabakin, Phys. Rev. 177, 1443 (1969)

    Article  ADS  Google Scholar 

  58. A. Shirokov, J. Vary, A. Mazur, T. Weber, Phys. Lett. B 644, 33 (2007)

    Article  ADS  Google Scholar 

  59. V. Bargmann, Rev. Mod. Phys. 21, 488 (1949)

    Article  ADS  MathSciNet  Google Scholar 

  60. H.S. Köhler, arXiv:nucl-th/0907.1539

  61. H.S. Köhler, Phys. Rev. 137, B1145 (1965)

    Article  ADS  Google Scholar 

  62. H.S. Köhler, Nucl. Phys. 88, 529 (1966)

    Article  Google Scholar 

  63. R.A. Arndt, L.D. Roper, R.L. Workman, M.W. McNaughton, Phys. Rev. D 45, 3995 (1992)

    Article  ADS  Google Scholar 

  64. S.A. Moszkowski, B.L. Scott, Ann. Phys. (N.Y.) 11, 65 (1960)

    Article  ADS  Google Scholar 

  65. J.W. Holt, G.E. Brown, arXiv:nucl-th/0408047

  66. S.A. Moszkowski, private communication

  67. H.S. Köhler, Nucl. Phys. 38, 661 (1962)

    Article  Google Scholar 

  68. H.S. Köhler, K. Morawetz, Phys. Rev. C 64, 024613 (2001)

    Article  ADS  Google Scholar 

  69. H.S. Köhler, Rudi Malfliet, Phys. Rev. C 48, 1034 (1992)

    Article  ADS  Google Scholar 

  70. H.S. Köhler, Phys. Rev. C 51, 3232 (1995)

    Article  ADS  Google Scholar 

  71. V. Weisskopf, Nucl. Phys. 3, 423 (1957)

    Article  MathSciNet  Google Scholar 

  72. J.P. Jeukenne, A. Lejeune, C. Mahaux, Phys. Rep. 25, 83 (1976)

    Article  ADS  Google Scholar 

  73. S.-O. Bäckman, Nucl. Phys. A 120, 593 (1968)

    Article  ADS  Google Scholar 

  74. K.A. Brueckner, J.L. Gammel, Phys. Rev. 109, 1022 (1958)

    ADS  Google Scholar 

  75. R. Sartor, C. Mahaux, Phys. Rev. C 21, 1546 (1980)

    Article  ADS  Google Scholar 

  76. G.E. Brown, J.H. Gunn, P. Gould, Nucl. Phys. 46, 598 (1963)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. S. Köhler.

Additional information

Communicated by V. Somà

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Author’s comment: All data generated during this study are contained in this published article.]

Publisher’s Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Köhler, H.S. Nuclear response functions with low-momentum interactions. Eur. Phys. J. A 55, 72 (2019). https://doi.org/10.1140/epja/i2019-12739-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2019-12739-9

Navigation