Skip to main content
Log in

Phenomenological view on baryon-baryon potentials from lattice QCD simulations

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract.

A qualitative discussion on the range of the potentials as they result from the phenomenological meson-exchange picture and from lattice simulations by the HAL QCD Collaboration is presented. For the former pion- and/or \( \eta\)-meson exchange are considered together with the scalar-isoscalar component of correlated \(\pi\pi/K \bar{K}\) exchange. It is observed that the intuitive expectation for the behavior of the baryon-baryon potentials for large separations, associated with the exchange of one and/or two pions, does not always match with the potentials extracted from the lattice simulations. Only in cases where pion exchange provides the longest ranged contribution, like in the \( \Xi N\) system, a reasonable qualitative agreement between the phenomenological and the lattice QCD potentials is found for baryon-baryon separations of \( r \gtrsim 1\) fm. For the \( \Omega N\) and \( \Omega\Omega\) interactions where isospin conservation rules out one-pion exchange a large mismatch is observed, with the potentials by the HAL QCD Collaboration being much longer ranged and much stronger at large distances as compared to the phenomenological expectation. This casts some doubts on the applicability of using these potentials in few- or many-body systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Z. Fodor, C. Hoelbling, Rev. Mod. Phys. 84, 449 (2012)

    Article  ADS  Google Scholar 

  2. R.A. Briceño, J.J. Dudek, R.D. Young, Rev. Mod. Phys. 90, 025001 (2018)

    Article  ADS  Google Scholar 

  3. HAL QCD Collaboration (S. Aoki et al.), Prog. Theor. Exp. Phys. 2012, 01A105 (2012)

    Google Scholar 

  4. S.R. Beane, W. Detmold, K. Orginos, M.J. Savage, Prog. Part. Nucl. Phys. 66, 1 (2011)

    Article  ADS  Google Scholar 

  5. Z. Davoudi, arXiv:1812.11899 [hep-lat]

  6. T. Iritani et al., JHEP 10, 101 (2016)

    Article  ADS  Google Scholar 

  7. T. Iritani et al., Phys. Rev. D 96, 034521 (2017)

    Article  ADS  Google Scholar 

  8. S.R. Beane, arXiv:1705.09239 [hep-lat]

  9. Z. Davoudi, EPJ Web of Conferences 175, 01022 (2018)

    Article  Google Scholar 

  10. HAL QCD Collaboration (T. Iritani et al.), JHEP 03, 007 (2019)

    Google Scholar 

  11. M. Lüscher, Commun. Math. Phys. 105, 153 (1986)

    Article  ADS  Google Scholar 

  12. M. Lüscher, Nucl. Phys. B 354, 531 (1991)

    Article  ADS  Google Scholar 

  13. HAL QCD Collaboration (N. Ishii et al.), Phys. Lett. B 712, 437 (2012)

    Article  ADS  Google Scholar 

  14. T. Yamazaki, Y. Kuramashi, Phys. Rev. D 96, 114511 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  15. S. Aoki, T. Doi, T. Hatsuda, N. Ishii, Phys. Rev. D 98, 038501 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  16. T. Yamazaki, Y. Kuramashi, Phys. Rev. D 98, 038502 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  17. E. Epelbaum, H.W. Hammer, U.-G. Meißner, Rev. Mod. Phys. 81, 1773 (2009)

    Article  ADS  Google Scholar 

  18. H. Yukawa, Proc. Phys. Math. Soc. Jpn. 17, 48 (1935)

    Google Scholar 

  19. M. Lacombe, B. Loiseau, J.M. Richard, R. Vinh Mau, J. Cote, P. Pires, R. De Tourreil, Phys. Rev. C 21, 861 (1980)

    Article  ADS  Google Scholar 

  20. A. Reuber, K. Holinde, H.C. Kim, J. Speth, Nucl. Phys. A 608, 243 (1996)

    Article  ADS  Google Scholar 

  21. Particle Data Group (M. Tanabashi et al.), Phys. Rev. D 98, 030001 (2018)

    Google Scholar 

  22. R. Machleidt, K. Holinde, C. Elster, Phys. Rep. 149, 1 (1987)

    Article  ADS  Google Scholar 

  23. HAL QCD Collaboration (K. Sasaki et al.), EPJ Web of Conferences 175, 05010 (2018)

    Article  Google Scholar 

  24. T. Iritani et al., Phys. Lett. B 792, 284 (2019) arXiv:1810.03416 [hep-lat]

    Article  ADS  Google Scholar 

  25. S. Gongyo et al., Phys. Rev. Lett. 120, 212001 (2018)

    Article  ADS  Google Scholar 

  26. T. Sekihara, Y. Kamiya, T. Hyodo, Phys. Rev. C 98, 015205 (2018)

    Article  ADS  Google Scholar 

  27. J. Haidenbauer, S. Petschauer, N. Kaiser, U.-G. Meißner, W. Weise, Eur. Phys. J. C 77, 760 (2017)

    Article  ADS  Google Scholar 

  28. J. Haidenbauer, S. Petschauer, N. Kaiser, U.-G. Meißner, A. Nogga, W. Weise, Nucl. Phys. A 915, 24 (2013)

    Article  ADS  Google Scholar 

  29. G.E. Brown, W. Weise, Phys. Rep. 22, 279 (1975)

    Article  ADS  Google Scholar 

  30. N. Fettes, U.-G. Meißner, Nucl. Phys. A 676, 311 (2000)

    Article  ADS  Google Scholar 

  31. Shi-Lin Zhu, Phys. Rev. C 63, 018201 (2001)

    ADS  Google Scholar 

  32. C. Alexandrou, E.B. Gregory, T. Korzec, G. Koutsou, J.W. Negele, T. Sato, A. Tsapalis, Phys. Rev. D 87, 114513 (2013)

    Article  ADS  Google Scholar 

  33. R.B. Wiringa, R.A. Smith, T.L. Ainsworth, Phys. Rev. C 29, 1207 (1984)

    Article  ADS  Google Scholar 

  34. R.V. Reid Jr., Ann. Phys. 50, 411 (1968)

    Article  ADS  Google Scholar 

  35. R.B. Wiringa, V.G.J. Stoks, R. Schiavilla, Phys. Rev. C 51, 38 (1995)

    Article  ADS  Google Scholar 

  36. R.H. Dalitz, F.v. Hippel, Phys. Lett. 10, 153 (1964)

    Article  ADS  Google Scholar 

  37. M. Sander, H.V. von Geramb, Lect. Notes Phys. 488, 141 (1997)

    Article  ADS  Google Scholar 

  38. B. Holzenkamp, K. Holinde, J. Speth, Nucl. Phys. A 500, 485 (1989)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Haidenbauer.

Additional information

Communicated by C. Urbach

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: This paper has no associated data.]

Publisher’s Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haidenbauer, J., Meißner, U.G. Phenomenological view on baryon-baryon potentials from lattice QCD simulations. Eur. Phys. J. A 55, 70 (2019). https://doi.org/10.1140/epja/i2019-12736-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2019-12736-0

Navigation