Skip to main content
Log in

The behavior of the structure function by using the effective exponent at low x

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract.

An analytical solution of the QCD evolution equations for the singlet and gluon distribution is presented. We decouple DGLAP evolution equations into the initial conditions by using a Laplace transform method at NnLO analysis. The relationship between the nonlinear behavior and color dipole model is considered based on an effective exponent behavior at low x values. We obtain the effective exponent at NLO analysis from the decoupled behavior of the distribution functions. The proton structure function compared with HERA data from the inclusive structure function \( F_{2}(x,Q^{2})\) for \( x \leq 10^{-2}\) and \( 5 \leq Q^{2} \leq 250\) GeV2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. V.N. Gribov, L.N. Lipatov, Sov. J. Nucl. Phys. 15, 438 (1972)

    Google Scholar 

  2. G. Altarelli, G. Parisi, Nucl. Phys. B 126, 298 (1977)

    Article  ADS  Google Scholar 

  3. Y.L. Dokshitzer, Sov. Phys. JETP 46, 641 (1977)

    ADS  Google Scholar 

  4. M. Klein, Ann. Phys. 528, 138 (2016)

    Article  MathSciNet  Google Scholar 

  5. P. Kostka et al., Pos DIS2013, 256 (2013)

    Google Scholar 

  6. L. Han et al., Phys. Lett. B 771, 106 (2017)

    Article  ADS  Google Scholar 

  7. L. Han et al., Phys. Lett. B 768, 241 (2017)

    Article  ADS  Google Scholar 

  8. Yao-Bei Liu, Nucl. Phys. B 923, 312 (2017)

    Article  ADS  Google Scholar 

  9. E. Gotsman et al., Nucl. Phys. B 539, 535 (1999)

    Article  ADS  Google Scholar 

  10. K.J. Eskola et al., Nucl. Phys. B 660, 211 (2003)

    Article  ADS  Google Scholar 

  11. L.V. Gribov, E.M. Levin, M.G. Ryskin, Phys. Rep. 100, 1 (1983)

    Article  ADS  Google Scholar 

  12. A.H. Mueller, J. Qiu, Nucl. Phys. B 268, 427 (1986)

    Article  ADS  Google Scholar 

  13. B. Rezaei, G.R. Boroun, Phys. Lett. B 692, 247 (2010)

    Article  ADS  Google Scholar 

  14. G.R. Boroun, Eur. Phys. J. A 42, 251 (2009)

    Article  ADS  Google Scholar 

  15. G.R. Boroun, Eur. Phys. J. A 43, 335 (2010)

    Article  ADS  Google Scholar 

  16. P. Phukan, arXiv:hep-ph/1705.06092

  17. M. Lalung, arXiv:hep-ph/1702.05291

  18. M. Devee, J.K. Sarma, Eur. Phys. J. C 74, 2751 (2014)

    Article  ADS  Google Scholar 

  19. M. Devee, J.K. Sarma, Nucl. Phys. B 885, 571 (2014)

    Article  ADS  Google Scholar 

  20. G.R. Boroun, S. Zarrin, Eur. Phys. J. Plus 128, 119 (2013)

    Article  Google Scholar 

  21. B. Rezaei, G.R. Boroun, Eur. Phys. J. C 73, 2412 (2013)

    Article  ADS  Google Scholar 

  22. G.R. Boroun, B. Rezaei, Eur. Phys. J. C 72, 2221 (2012)

    Article  ADS  Google Scholar 

  23. G.R. Boroun, B. Rezaei, Phys. At. Nucl. 71, 1077 (2008)

    Article  Google Scholar 

  24. Martin M. Block et al., Eur. Phys. J. C 69, 425 (2010)

    Article  ADS  Google Scholar 

  25. Martin M. Block et al., Phys. Rev. D 84, 094010 (2011)

    Article  ADS  Google Scholar 

  26. Martin M. Block et al., Phys. Rev. D 88, 014006 (2013)

    Article  ADS  Google Scholar 

  27. F. Taghavi-Shahri et al., Eur. Phys. J. C 71, 1590 (2011)

    Article  ADS  Google Scholar 

  28. S. Shoeibi et al., Phys. Rev. D 97, 074013 (2018)

    Article  ADS  Google Scholar 

  29. H. Khanpour, A. Mirjalili, S. Atashbar Tehrani, Phys. Rev. C 95, 035201 (2017)

    Article  ADS  Google Scholar 

  30. A. Vogt, S. Moch, J.A.M. Vermaseren, Nucl. Phys. B 691, 129 (2004)

    Article  ADS  Google Scholar 

  31. C.D. White, R.S. Thorne, Eur. Phys. J. C 45, 179 (2006)

    Article  ADS  Google Scholar 

  32. B.G. Shaikhatdenov, A.V. Kotikov, V.G. Krivokhizhin, G. Parente, Phys. Rev. D 81, 034008 (2010)

    Article  ADS  Google Scholar 

  33. K. Golec-Biernat, M. Wuesthoff, Phys. Rev. D 59, 014017 (1999)

    Article  ADS  Google Scholar 

  34. K. Golec-Biernat, Acta. Phys. Pol. B 33, 2771 (2002)

    ADS  Google Scholar 

  35. A.D. Martin et al., Eur. Phys. J. C 63, 189 (2009)

    Article  ADS  Google Scholar 

  36. H1 Collaboration (V. Andreev et al.), Eur. Phys. J. C 74, 2814 (2014)

    Article  Google Scholar 

  37. H1 Collaboration (C. Adloff et al.), Eur. Phys. J. C 21, 33 (2001)

    Article  ADS  Google Scholar 

  38. H1 Collaboration (C. Adloff et al.), Phys. Lett. B 520, 183 (2001)

    Article  ADS  Google Scholar 

  39. M. Praszalowicz, T. Stebel, JHEP 03, 090 (2013)

    Article  ADS  Google Scholar 

  40. T. Stebel, Phys. Rev. D 88, 014026 (2013)

    Article  ADS  Google Scholar 

  41. H1 and ZEUS Collaboration (F.D. Aaron et al.), JHEP 01, 109 (2010)

    ADS  Google Scholar 

  42. H1 and ZEUS Collaboration (F.D. Aaron et al.), Eur. Phys. J. C 63, 625 (2009)

    Article  ADS  Google Scholar 

  43. H1 and ZEUS Collaboration (F.D. Aaron et al.), Eur. Phys. J. C 64, 561 (2009)

    Article  ADS  Google Scholar 

  44. M. Gluk, P. Jimenez-Delgado, E. Reya, Eur. Phys. J. C 53, 355 (2008)

    Article  ADS  Google Scholar 

  45. A. Donnachie, P.V. Landshoff, Phys. Lett. B 550, 160 (2002)

    Article  ADS  Google Scholar 

  46. A. Donnachie, P.V. Landshoff, Phys. Lett. B 533, 277 (2002)

    Article  ADS  Google Scholar 

  47. M. Bonvini et al., Eur. Phys. J. C 76, 597 (2016)

    Article  ADS  Google Scholar 

  48. V.P. Goncalves, M.V.T. Machado, Phys. Rev. Lett. 91, 202002 (2003)

    Article  ADS  Google Scholar 

  49. L. Motyka, arXiv:0809.4191v1 (2008)

  50. H. Kowalski et al., Eur. Phys. J. C 77, 777 (2017)

    Article  ADS  Google Scholar 

  51. Z. Jalilian, G.R. Boroun, Phys. Lett. B 773, 455 (2017)

    Article  ADS  Google Scholar 

  52. E. Avsar, G. Gustafson, JHEP 04, 067 (2007)

    Article  ADS  Google Scholar 

  53. E. Iancu et al., Phys. Lett. B 590, 199 (2004)

    Article  ADS  Google Scholar 

  54. J.R. Forshaw, G. Shaw, JHEP 12, 052 (2004)

    Article  ADS  Google Scholar 

  55. H1 and ZEUS Collaboration (H. Abramowicz et al.), Eur. Phys. J. C 73, 2311 (2013)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. R. Boroun.

Additional information

Communicated by Xin-Nian Wang

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: All data generated during this study are contained in this published article.]

Publisher’s Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rezaei, B., Boroun, G.R. The behavior of the structure function by using the effective exponent at low x . Eur. Phys. J. A 55, 66 (2019). https://doi.org/10.1140/epja/i2019-12734-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2019-12734-2

Navigation