Skip to main content
Log in

Scission point model for the mass distribution of ternary fission

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract.

A modified scission point model is adopted to study the mass distribution of thermal neutron induced binary and ternary fission of 235U. The scission configuration and the most favourable fragment deformation is identified through an energy balance criterion where the macroscopic part due to liquid drop and the microscopic part due to shell correction together with the deformation dependent interaction potential are used. The available energy for each channel together with fragment deformation is used to evaluate nuclear level densities in the Fermi gas model. Since the model is found to give the expected double humped mass distribution for binary fission of 236U, this is then applied for the ternary fission of the same nuclei with fixed third fragment. Two different third fragments with two cases of collinear arrangement were studied with the model. The obtained ternary mass distribution was then compared with the calculated binary mass distribution. In all the cases, the influence of shell effects is found to be prominent with one of the fragments associated with the Sn nucleus. The closed shell nuclei possess maximum yield in both binary and ternary mass distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Fong, Phys. Rev. 102, 434 (1956)

    Article  ADS  Google Scholar 

  2. J. Maruhn, W. Greiner, Phys. Rev. Lett. 32, 548 (1974)

    Article  ADS  Google Scholar 

  3. C. Ishizuka, M.D. Usang, F.A. Ivanyuk, J.A. Maruhn, K. Nishio, S. Chiba, Phys. Rev. C 96, 064616 (2017)

    Article  ADS  Google Scholar 

  4. A.V. Ignatyuk, Sov. J. Nucl. Phys. 9, 208 (1969)

    Google Scholar 

  5. M. Rajasekaran, V. Devanathan, Phys. Rev. C 24, 2606 (1981)

    Article  ADS  Google Scholar 

  6. B. Wilkins, E. Steinberg, Phys. Lett. B 42, 141 (1972)

    Article  ADS  Google Scholar 

  7. B.D. Wilkins, E.P. Steinberg, R.R. Chasman, Phys. Rev. C 14, 1832 (1976)

    Article  ADS  Google Scholar 

  8. A.V. Andreev, G.G. Adamian, N.V. Antonenko, Phys. Rev. C 86, 044315 (2012)

    Article  ADS  Google Scholar 

  9. S. Panebianco, J.L. Sida, H. Goutte, J.F. Lemaitre, N. Dubray, S. Hilaire, Phys. Rev. C 86, 064601 (2012)

    Article  ADS  Google Scholar 

  10. F.A. Ivanyuk, S. Chiba, Y. Aritomo, Phys. Rev. C 90, 054607 (2014)

    Article  ADS  Google Scholar 

  11. N. Carjan, F. Ivanyuk, Y. Oganessian, Nucl. Phys. A 968, 453 (2017)

    Article  ADS  Google Scholar 

  12. J.F. Lemaitre, S. Panebianco, J.L. Sida, S. Hilaire, S. Heinrich, Phys. Rev. C 92, 034617 (2015)

    Article  ADS  Google Scholar 

  13. J. Dechargé, D. Gogny, Phys. Rev. C 21, 1568 (1980)

    Article  ADS  Google Scholar 

  14. V.Y. Denisov, N.A. Pilipenko, Phys. Rev. C 76, 014602 (2007)

    Article  ADS  Google Scholar 

  15. V.Y. Denisov, N.A. Pilipenko, I.Y. Sedykh, Phys. Rev. C 95, 014605 (2017)

    Article  ADS  Google Scholar 

  16. R.W. Hasse, Nucl. Phys. A 128, 609 (1969)

    Article  ADS  Google Scholar 

  17. I. Halpern, Physics and Chemistry of Fission, Vol. II, Proceedings of the Symposium on Physics and Chemistry of Fission (IAEA, 1965)

  18. P. Fong, Phys. Rev. C 3, 2025 (1971)

    Article  ADS  Google Scholar 

  19. H. Diehl, W. Greiner, Nucl. Phys. A 229, 29 (1974)

    Article  ADS  Google Scholar 

  20. V.A. Rubchenya, S.G. Yavshits, Z. Phys. A 329, 217 (1988)

    ADS  Google Scholar 

  21. A. Sandulescu, F. Crstoiu, S. Misicu, A. Florescu, A.V. Ramayya, J.H. Hamilton, W. Greiner, J. Phys. G: Nucl. Part. Phys. 24, 181 (1998)

    Article  ADS  Google Scholar 

  22. D. Poenaru, W. Greiner, R. Gherghescu, At. Data Nucl. Data Tables 68, 91 (1998)

    Article  ADS  Google Scholar 

  23. U. Koster, H. Faust, G. Fioni, T. Friedrichs, M. Gro, S. Oberstedt, Nucl. Phys. A 652, 371 (1999)

    Article  ADS  Google Scholar 

  24. A. Săndulescu, F. Carstoiu, I. Bulboacă, W. Greiner, Phys. Rev. C 60, 044613 (1999)

    Article  ADS  Google Scholar 

  25. D.N. Poenaru, B. Dobrescu, W. Greiner, J.H. Hamilton, A.V. Ramayya, J. Phys. G: Nucl. Part. Phys. 26, L97 (2000)

    Article  ADS  Google Scholar 

  26. J.P. Lestone, Phys. Rev. C 70, 021601 (2004)

    Article  ADS  Google Scholar 

  27. R.A. Gherghescu, D.N. Poenaru, W. Greiner, Int. J. Mod. Phys. E 17, 2221 (2008)

    Article  ADS  Google Scholar 

  28. K. Manimaran, M. Balasubramaniam, Phys. Rev. C 79, 024610 (2009)

    Article  ADS  Google Scholar 

  29. K. Manimaran, M. Balasubramaniam, J. Phys. G: Nucl. Part. Phys. 37, 045104 (2010)

    Article  ADS  Google Scholar 

  30. K. Manimaran, M. Balasubramaniam, Eur. Phys. J. A 45, 293 (2010)

    Article  ADS  Google Scholar 

  31. Yu.V. Pyatkov, D.V. Kamanin, W. von Oertzen, A.A. Alexandrov, I.A. Alexandrova, O.V. Falomkina, N.A. Kondratjev, Yu.N. Kopatch, E.A. Kuznetsova, Yu.E. Lavrova et al., Eur. Phys. J. A 45, 29 (2010)

    Article  ADS  Google Scholar 

  32. K. Manimaran, M. Balasubramaniam, Phys. Rev. C 83, 034609 (2011)

    Article  ADS  Google Scholar 

  33. Yu.V. Pyatkov, D.V. Kamanin, W. von Oertzen, A.A. Alexandrov, I.A. Alexandrova, O.V. Falomkina, N. Jacobs, N.A. Kondratjev, E.A. Kuznetsova, Yu.E. Lavrova et al., Eur. Phys. J. A 48, 94 (2012)

    Article  ADS  Google Scholar 

  34. W. von Oertzen, A. Nasirov, Phys. Lett. B 734, 234 (2014)

    Article  ADS  Google Scholar 

  35. M. Balasubramaniam, C. Karthikraj, S. Selvaraj, N. Arunachalam, Phys. Rev. C 90, 054611 (2014)

    Article  ADS  Google Scholar 

  36. M.T. Senthil Kannan, M. Balasubramaniam, Eur. Phys. J. A 53, 164 (2017)

    Article  ADS  Google Scholar 

  37. K.R. Vijayaraghavan, M. Balasubramaniam, W. von Oertzen, Phys. Rev. C 91, 044616 (2015)

    Article  ADS  Google Scholar 

  38. M. Balasubramaniam, K.R. Vijayaraghavan, K. Manimaran, Phys. Rev. C 93, 014601 (2016)

    Article  ADS  Google Scholar 

  39. K.R. Vijayaraghavan, M. Balasubramaniam, W. von Oertzen, Phys. Rev. C 90, 024601 (2014)

    Article  ADS  Google Scholar 

  40. I. Ragnarsson, S. Nilsson, Shapes and Shells in Nuclear Structure (Cambridge University Press, 2005)

  41. M. Bolsterli, E.O. Fiset, J.R. Nix, J.L. Norton, Phys. Rev. C 5, 1050 (1972)

    Article  ADS  Google Scholar 

  42. G. Audi, M. Wang, A. Wapstra, F. Kondev, M. MacCormick, X. Xu, B. Pfeiffer, Chin. Phys. C 36, 1287 (2012)

    Article  Google Scholar 

  43. V.Y. Denisov, Phys. Rev. C 91, 024603 (2015)

    Article  ADS  Google Scholar 

  44. J. Blocki, J. Randrup, W. Swiatecki, C. Tsang, Ann. Phys. 105, 427 (1977)

    Article  ADS  Google Scholar 

  45. A.J. Cole, Statistical Models for Nuclear Decay: From Evaporation to Vaporization, Series in Fundamental and Applied Nuclear Physics (CRC Press, 2000)

  46. H.A. Bethe, Rev. Mod. Phys. 9, 69 (1937)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Balasubramaniam.

Additional information

Communicated by M. Bender

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors' comment: The binary and ternary yield distribution for the thermal neutron induced fission of 235U using the scission point model are reported as figures. All data generated during this study are contained in this article.]

Publisher's Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karthika, C., Balasubramaniam, M. Scission point model for the mass distribution of ternary fission. Eur. Phys. J. A 55, 59 (2019). https://doi.org/10.1140/epja/i2019-12729-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2019-12729-y

Navigation