Skip to main content
Log in

Dense matter equation of state for neutron star mergers

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract.

In simulations of binary neutron star mergers, the dense matter equation of state (EOS) is required over wide ranges of density and temperature as well as under conditions in which neutrinos are trapped, and the effects of magnetic fields and rotation prevail. Here we assess the status of dense matter theory and point out the successes and limitations of approaches currently in use. A comparative study of the excluded volume (EV) and virial approaches for the \( np\alpha\) system using the equation of state of Akmal, Pandharipande and Ravenhall for interacting nucleons is presented in the sub-nuclear density regime. Owing to the excluded volume of the \( \alpha\)-particles, their mass fraction vanishes in the EV approach below the baryon density 0.1fm^-3, whereas it continues to rise due to the predominantly attractive interactions in the virial approach. The EV approach of Lattimer et al. is extended here to include clusters of light nuclei such as d, 3H and 3He in addition to \( \alpha\)-particles. Results of the relevant state variables from this development are presented and enable comparisons with related but slightly different approaches in the literature. We also comment on some of the sweet and sour aspects of the supra-nuclear EOS. The extent to which the neutron star gravitational and baryon masses vary due to thermal effects, neutrino trapping, magnetic fields and rotation are summarized from earlier studies in which the effects from each of these sources were considered separately. Increases of about \( 20\% (\gtrsim 50\%)\) occur for rigid (differential) rotation with comparable increases occurring in the presence of magnetic fields only for fields in excess of \( 10^{18}\) Gauss. Comparatively smaller changes occur due to thermal effects and neutrino trapping. Some future studies to gain further insight into the outcome of dynamical simulations are suggested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. B.P. Abbott et al., Phys. Rev. Lett. 119, 161101 (2017)

    ADS  Google Scholar 

  2. E.E. Flanagan, T. Hinderer, Phys. Rev. D 77, 021502 (2008)

    ADS  Google Scholar 

  3. M. Favata, Phys. Rev. Lett. 112, 101101 (2014)

    ADS  Google Scholar 

  4. A.E.H. Love, Proc. R. Soc. A 82, 73 (1909)

    ADS  Google Scholar 

  5. K. Thorne, A. Campolattaro, Astrophys. J. 149, 591 (1967)

    ADS  Google Scholar 

  6. T. Hinderer, Astrophys. J. 677, 1216 (2008)

    ADS  Google Scholar 

  7. T. Damour, A. Nagar, Phys. Rev. D 80, 084035 (2009)

    ADS  Google Scholar 

  8. T. Hinderer, B.D. Lackey, R.N. Lang, J.S. Read, Phys. Rev. D 81, 123016 (2010)

    ADS  Google Scholar 

  9. S. Postnikov, M. Prakash, J.M. Lattimer, Phys. Rev. D 82, 024016 (2010)

    ADS  Google Scholar 

  10. S. De, arXiv:1804.08583 (2018)

  11. LIGO Scientific Collaboration, Virgo Collaboration, Astrophys. J. Lett. 848, L12 (2017)

    ADS  Google Scholar 

  12. B. Margalit, B.D. Metzger, Astrophys. J. Lett. 850, L19 (2017)

    ADS  Google Scholar 

  13. A. Bauswein, H.T. Janka, Phys. Rev. Lett 108, 0111101 (2012)

    Google Scholar 

  14. A. Bauswein, N. Stergioulas, H.T. Janka, Eur. Phys. J. A 52, 56 (2016)

    ADS  Google Scholar 

  15. T.W. Baumgarte, S.L. Shapiro, Numerical Relativity (Cambridge University Press, New York, 2010)

  16. J.A. Faber, F.A. Rasio, Living Rev. Relativ. 15, 8 (2012)

    ADS  Google Scholar 

  17. M. Shibata, Numerical Relativity (World Scientific, Singapore, 2015)

  18. L. Baiotti, L. Rezzolla, Rep. Prog. Phys. 80, 1 (2017)

    Google Scholar 

  19. V. Paschalidis, N. Stergioulas, Living Rev. Relativ. 20, 7 (2017)

    ADS  Google Scholar 

  20. J.M. Lattimer, F.D. Swesty, Nucl. Phys. A 535, 331 (1991)

    ADS  Google Scholar 

  21. S. Bernuzzi et al., Phys. Rev. D 94, 024023 (2016)

    ADS  MathSciNet  Google Scholar 

  22. F. Zappa, S. Bernuzzi, D. Radice, A. Perego, T. Dietrich, Phys. Rev. Lett. 120, 111101 (2018)

    ADS  Google Scholar 

  23. D. Radice, A. Perego, F. Zappa, S. Bernuzzi, Astrophys. J. Lett. 852, L29 (2018)

    ADS  Google Scholar 

  24. A. Akmal, V.R. Pandharipande, D.G. Ravenhall, Phys. Rev. C 58, 1804 (1998)

    ADS  Google Scholar 

  25. C.J. Horowitz, A. Schwenk, Nucl. Phys. A 776, 55 (2006)

    ADS  Google Scholar 

  26. M. Oertel, M. Hempel, T. Klähn, S. Typel, Rev. Mod. Phys. 89, 015007 (2017)

    ADS  Google Scholar 

  27. D.G. Ravenhall, C.J. Pethick, J.R. Wilson, Phys. Rev. Lett. 50, 2066 (1983)

    ADS  Google Scholar 

  28. C.J. Pethick, D.G. Ravenhall, Annu. Rev. Nucl. Part. Sci. 45, 429 (1995)

    ADS  Google Scholar 

  29. A.S. Schneider, C. Constantinou, B. Muccioli, M. Prakash, in preparation

  30. A. Roggeros, J. Margueron, L.F. Roberts, S. Reddy, Phys. Rev. C 97, 045804 (2018)

    ADS  Google Scholar 

  31. C. Constantinou, B. Muccioli, M. Prakash, J.M. Lattimer, Phys. Rev. C 89, 065802 (2014)

    ADS  Google Scholar 

  32. G. Baym, H.A. Bethe, C.J. Pethick, Nucl. Phys. A 175, 225 (1971)

    ADS  Google Scholar 

  33. D.Q. Lamb, J.M. Lattimer, C.J. Pethick, D.G. Ravenhall, Nucl. Phys. A 432, 646 (1985)

    ADS  Google Scholar 

  34. M. Prakash, The nuclear equation of state and neutron stars, in Nuclear equation of State, edited by A. Ansari, L. Satpathy (World Scientific, Singapore, 1996) p. 229

  35. D. Page, J.M. Lattimer, M. Prakash, A.W. Steiner, Stellar superfluids, Vol. 2 in Novel Superfluids, edited by K.H. Benneman, J.B. Ketterson (Oxford University Press, Oxford, 2015) p. 505

    Google Scholar 

  36. C. Constantinou, B. Muccioli, M. Prakash, J.M. Lattimer, Phys. Rev. C 92, 025801 (2015)

    ADS  Google Scholar 

  37. E. Beth, G.E. Uhlenbeck, Physica 4, 915 (1937)

    ADS  Google Scholar 

  38. R. Venugopalan, M. Prakash, Nucl. Phys. A 546, 718 (1997)

    ADS  Google Scholar 

  39. E. O’Connor, D. Gazit, C.J. Horowitz, A. Schwenk, N. Barnea, Phys. Rev. C 75, 055803 (2007)

    ADS  Google Scholar 

  40. A. Arcones et al., Phys. Rev. C 78, 015806 (2008)

    ADS  Google Scholar 

  41. G. Shen, C.J. Horowitz, S. Teige, Phys. Rev. C 82, 045802 (2010)

    ADS  Google Scholar 

  42. S. Typel, Eur. Phys. J. A 52, 16 (2016)

    ADS  Google Scholar 

  43. H. Pais, S. Typel, Comparison of equation of state models with different cluster dissolution mechanisms, in Nuclear Particle Correlations and Cluster Physics, edited by W.U. Schröder (World Scientific Publishing Co. Pte. Ltd., Singapore, 2017) p. 95

    Google Scholar 

  44. C.J. Pethick, H. Smith, Bose-Einstein Condensation in Dilute Gases, 2nd edition (Cambridge University Press, Cambridge, 2008)

  45. A. Burrows, J.M. Lattimer, Astrophys. J. 285, 294 (1984)

    ADS  Google Scholar 

  46. A.S. Schneider, L.F. Roberts, C.D. Ott, Phys. Rev. C 96, 065802 (2017)

    ADS  Google Scholar 

  47. J.M. Lattimer, M. Prakash, Phys. Rep. 621, 127 (2016)

    ADS  MathSciNet  Google Scholar 

  48. J.M. Lattimer, M. Prakash, Astrophys. J. 550, 426 (2001)

    ADS  Google Scholar 

  49. D. Page, J.M. Lattimer, M. Prakash, A.W. Steiner, Astrophys. J. Suppl. 155, 623 (2004)

    ADS  Google Scholar 

  50. J.M. Lattimer, M. Prakash, Phys. Rep. 442, 109 (2007)

    ADS  Google Scholar 

  51. K. Hebeler, J.M. Lattimer, C.J. Pethick, A. Schwenk, Astophys. J. 773, 11 (2013)

    ADS  Google Scholar 

  52. M. Nauenberg, G. Chapline, Astrophys. J. 179, 277 (1973)

    ADS  Google Scholar 

  53. J.M. Lattimer, M. Prakash, D. Masak, A. Yahil, Astrophys. J. 355, 241 (1990)

    ADS  Google Scholar 

  54. C. Constantinou, M. Prakash, Phys. Rev. C 95, 055802 (2017)

    ADS  Google Scholar 

  55. S.A. Bludman, C. Dover, Phys. Rev. D 22, 1333 (1980)

    ADS  Google Scholar 

  56. M. Prakash, T.L. Ainsworth, J.M. Lattimer, Phys. Rev. Lett. 61, 2518 (1988)

    ADS  Google Scholar 

  57. M. Prakash et al., Phys. Rep. 280, 1 (1997)

    ADS  Google Scholar 

  58. H. Müther, M. Prakash, T.L. Ainsworth, Phys. Lett. B 199, 469 (1987)

    ADS  Google Scholar 

  59. L. Engvik, M. Hjorth-Jensen, E. Osnes, G. Bao, E. Ostgaard, Astrophys. J. 469, 794 (1996)

    ADS  Google Scholar 

  60. H. Müller, B.D. Serot, Nucl. Phys. A 606, 508 (1996)

    ADS  Google Scholar 

  61. J.M. Lattimer, M. Prakash, What a two solar mass neutron star means, in From Nuclei to Neutron Stars, edited by S. Lee (World Scientific, Singapore, 2011) p. 275

  62. M. Prakash, J.M. Lattimer, R.F. Sawyer, R.R. Volkas, Annu. Rev. Nucl. Part. Sci. 51, 295 (2001)

    ADS  Google Scholar 

  63. A. Burrows, J.M. Lattimer, Astrophys. J. 307, 178 (1986)

    ADS  Google Scholar 

  64. W. Keil, H. Janka, Astron. Astrophys. 29, 145 (1995)

    ADS  Google Scholar 

  65. J.A. Pons, S. Reddy, M. Prakash, J.M. Lattimer, J.A. Miralles, Astrophys. J. 513, 382 (1999)

    Google Scholar 

  66. J.A. Pons, J.A. Miralles, M. Prakash, J.M. Lattimer, Astrophys. J. 553, 382 (2001)

    ADS  Google Scholar 

  67. J.A. Pons, A.W. Steiner, M. Prakash, J.M. Lattimer, Phys. Rev. Lett. 86, 5223 (2001)

    ADS  Google Scholar 

  68. L.F. Roberts et al., Phys. Rev. Lett. 108, 1103 (2012)

    Google Scholar 

  69. A. Broderick, M. Prakash, J.M. Lattimer, Astrophys. J. 537, 351 (2000)

    ADS  Google Scholar 

  70. A. Broderick, M. Prakash, J.M. Lattimer, Phys. Lett. B 531, 167 (2002)

    ADS  Google Scholar 

  71. J. Schwinger, Particles, Sources and Fields, Vol. 3 (Addison Wesley, Redwood City, 1988)

  72. C. Cardall, M. Prakash, J.M. Lattimer, Astrophys. J. 554, 322 (2001)

    ADS  Google Scholar 

  73. M. Bocquet, S. Bonozzola, E. Gourgoulhon, J. Novak, Astron. Astrophys. 301, 757 (1995)

    ADS  Google Scholar 

  74. T.W. Baumgarte, S. Shapiro, M. Shibata, Astrophys. J. 528, L29 (2000)

    ADS  Google Scholar 

  75. G.B. Cook, S.L. Shapiro, S.L. Teukolsky, Astrophys. J. 422, 227 (1994)

    ADS  Google Scholar 

  76. G. Bozzola, N. Sterigoulas, A. Bauswein, Mon. Not. R. Astron. Soc. 474, 3557 (2018)

    ADS  Google Scholar 

  77. J.L. Friedman, N. Stergioulas, Rotating Relativistic Stars (Cambridge University Press, Cambridge, 2013)

  78. C. Breu, L. Rezzola, Mon. Not. R. Astron. Soc. 459, 646 (2016)

    ADS  Google Scholar 

  79. L.R. Weih, E.R. Most, L. Rezzola, Mon. Not. R. Astron. Soc. 473, L126 (2018)

    ADS  Google Scholar 

  80. L. Rezzola, E.R. Most, L.R. Weih, Astrophys. J. Lett. 852, L25 (2018)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Prakash.

Additional information

Communicated by D. Blaschke

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lalit, S., Mamun, M.A.A., Constantinou, C. et al. Dense matter equation of state for neutron star mergers. Eur. Phys. J. A 55, 10 (2019). https://doi.org/10.1140/epja/i2019-12670-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2019-12670-1

Navigation