Skip to main content
Log in

“Stiff” deformed nuclei, configuration dependent pairing and the \(\beta\) and \(\gamma\) degrees of freedom

  • Review
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract.

We review the current experimental data on collective structures within the pairing gap of even-even deformed nuclei, with emphasis on nuclei near mass number \(A \sim 150\). The essential physics that determines the characteristics of the first excited 0+ (02+) state in these nuclei has been in dispute for several decades. Interpretation of these states in terms of surface \(\beta\) quadrupole vibrations has often been challenged. We examine the role that configuration dependent pairing can play in these levels particularly at the onset of deformation as major shells fill. In all deformed nuclei rotational bands are found experimentally, starting at a state with spin 2+ with excitation energies near the middle of the pairing gap. These rotational bands, with quantum number \(K^{\pi} = 2^{+}\), are usually referred to as \(\gamma\) bands and have been identified with quadrupole surface vibrations in the plane perpendicular to the major axis of deformation. However \(K^{\pi} = 2^{+}\) bands can also arise due to the breaking of axial symmetry of the quadrupole shape. We discuss data that can help with these different interpretations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Niels Bohr, John Archibald Wheeler, Phys. Rev. 56, 426 (1939)

    Google Scholar 

  2. Aage Bohr, Dan. Mat. Fys. Medd. 26, 14 (1952)

    Google Scholar 

  3. A. Bohr, B.R. Mottleson, Dan. Mat. Fys. Medd. 27, 16 (1953)

    Google Scholar 

  4. M.G. Mayer, Phys. Rev. 75, 1968 (1949)

    ADS  Google Scholar 

  5. O. Haxel, J.H.D. Jensen, H.E. Suess, Z. Phys. 128, 295 (1950)

    ADS  Google Scholar 

  6. D.R. Bès, K. Dan, Vid. Selsk. Mat.-Fys. Medd. 33, 2 (1961)

    Google Scholar 

  7. D.R. Bès, Nucl. Phys. 49, 544 (1963)

    Google Scholar 

  8. D.R. Bès, P. Federman, E. Maqueda, A. Zucker, Nucl. Phys. 65, 1 (1965)

    Google Scholar 

  9. A. Arima, F. Iachello, Phys. Rev. Lett. 35, 1069 (1975)

    ADS  Google Scholar 

  10. A. Arima, F. Iachello, Ann. Phys. (N.Y.) 99, 253 (1976)

    ADS  Google Scholar 

  11. Sven Gösta Nilsson, Dan. Mat. Fys. Medd. 29, 16 (1955)

    Google Scholar 

  12. K. Kumar, Nucl. Phys. A 92, 653 (1967)

    ADS  Google Scholar 

  13. K. Kumar, Nucl. Phys. A 231, 189 (1974)

    ADS  Google Scholar 

  14. Aage Bohr, B.R. Mottelson, Nuclear Structure, Vols. I, II (Benjamin, 1975)

  15. P.E. Garrett, J.L. Wood, S.W. Yates, Phys. Scr. 83, 063001 (2018)

    ADS  Google Scholar 

  16. Lord Rayleigh, Proc. R. Soc. London 29, 71 (1879) (see appendix II, eq. (40))

    Google Scholar 

  17. D.J. Rowe, Nuclear Collective Motion: Models and Theory (Methuen, London, 1970)

  18. P. Ring, P. Schuck, The Nuclear Many-Body Problem, 3rd edition (Springer, 1904)

  19. Leon Dommelen, Quantum Mechanics for Engineers, www.eng.fsu.edu/~dommelen/quantum/style_a/nt_liqdrop.html

  20. C.F. von Weizsäcker, Z. Phys. 96, 431 (1935)

    Google Scholar 

  21. S. Flügge, Ann. Phys. Leipzig 431, 373 (1941)

    ADS  Google Scholar 

  22. V.M. Strutinski, Nucl. Phys. A 95, 420 (1967)

    ADS  Google Scholar 

  23. V.M. Strutinski, Nucl. Phys. A 122, 1 (1968)

    ADS  Google Scholar 

  24. P.J. Twin et al., Phys. Rev. Lett. 57, 811 (1986)

    ADS  Google Scholar 

  25. J.F. Sharpey-Schafer, Prog. Part. Nucl. Phys. 28, 187 (1992)

    ADS  Google Scholar 

  26. Xiao-Ling Han, Cheng-Li Wu, At. Data Nucl. Data Tables 63, 117 (1996)

    ADS  Google Scholar 

  27. R.A. Broglia, F. Barranco, G.F. Bertsch, E. Vigezzi, Phys. Rev. C 49, 552 (1994)

    ADS  Google Scholar 

  28. David M. Brink, Ricardo A. Broglia, Nuclear Superfluidity, Pairing in Finite Systems (Cambridge Univ. Press, 2005) p. 165

  29. P.M.A. Dirac, Proc. R. Soc. A 133, 621 (1927)

    ADS  Google Scholar 

  30. B. Podolsky, Phys. Rev. 32, 812 (1928)

    ADS  Google Scholar 

  31. W. Pauli, Handb. Phys. 24, 120 (1933)

    Google Scholar 

  32. D.R. Inglis, Phys. Rev. 103, 1786 (1956)

    ADS  Google Scholar 

  33. S.T. Belyaev, Nucl. Phys. 24, 322 (1961)

    Google Scholar 

  34. D.J. Thouless, J.G. Valatin, Nucl. Phys. 31, 211 (1962)

    Google Scholar 

  35. Z.P. Li et al., Phys. Rev. C 86, 034334 (2012)

    ADS  Google Scholar 

  36. P.E. Garrett, J. Phys. G 27, R1 (2001)

    ADS  Google Scholar 

  37. A. Bohr, B.R. Mottelson, Phys. Scr. 25, 28 (1982)

    ADS  Google Scholar 

  38. W.D. Kulp et al., Phys. Rev. C 77, 061301(R) (2008)

    ADS  Google Scholar 

  39. M.A.M. Shahabuddin et al., Nucl. Phys. A 340, 109 (1980)

    ADS  Google Scholar 

  40. Shiro Yoshida, Nucl. Phys. 33, 685 (1962)

    Google Scholar 

  41. R.J. Ascuitto, B. Sørensen, Nucl. Phys. A 190, 297 (1972)

    ADS  Google Scholar 

  42. J.P. Davidson, Collective Models of the Nucleus (Academic, New York and London, 1968) p. 39

  43. A. Saha, D. Scholten, D.C.J.M. Hageman, H.T. Fortune, Phys. Lett. B 85, 215 (1979)

    ADS  Google Scholar 

  44. Th.W. Elze, J.S. Boyno, J.R. Huizenga, Nucl. Phys. A 187, 473 (1972)

    ADS  Google Scholar 

  45. D.G. Fleming, C. Günther, G. Hagemann, B. Herskind, P.O. Tjøm, Phys. Rev. C 8, 806 (1973)

    ADS  Google Scholar 

  46. H.H. Schmidt et al., J. Phys. G 12, 411 (1986)

    ADS  Google Scholar 

  47. J.F. Sharpey-Schafer et al., Eur. J. Phys. A 47, 6 (2011)

    ADS  Google Scholar 

  48. G. Løvhøiden, J.C. Waddington, K.A. Hagemann, S.A. Hjorth, H. Ryde, Can. J. Phys. 51, 1369 (1973)

    ADS  Google Scholar 

  49. M.K. Khan et al., Nucl. Phys. A 567, 495 (1994)

    ADS  Google Scholar 

  50. T. Hayakawa et al., Eur. Phys. J. A 9, 153 (2000)

    ADS  Google Scholar 

  51. T.B. Brown et al., Phys. Rev. C 66, 064320 (2002)

    ADS  Google Scholar 

  52. R. Vlastou et al., Nucl. Phys. A 580, 133 (1994)

    ADS  Google Scholar 

  53. T. Hayakawa et al., Eur. Phys. J. A 15, 299 (2002)

    ADS  Google Scholar 

  54. A. Pipidis et al., Phys. Rev. C 72, 064307 (2005)

    ADS  Google Scholar 

  55. S.N.T. Majola et al., Phys. Rev. C 91, 034330 (2015)

    ADS  Google Scholar 

  56. T.R.S. Dinoko, PhD Thesis, Univ. of Western Cape (2014)

  57. W.D. Kulp et al., Phys. Rev. C 76, 034319 (2007) and private communication

    ADS  Google Scholar 

  58. J.F. Sharpey-Schafer et al., Eur. J. Phys. A 47, 5 (2011)

    ADS  Google Scholar 

  59. W.D. Kulp et al., Phys. Rev. Lett. 91, 102501 (2003)

    ADS  Google Scholar 

  60. W.D. Kulp et al., Phys. Rev. C 71, 041303(R) (2005)

    ADS  MathSciNet  Google Scholar 

  61. P.E. Garrett et al., Phys. Rev. Lett. 103, 062501 (2009)

    ADS  Google Scholar 

  62. Kris Heyde, John L. Wood, Rev. Mod. Phys. 83, 1467 (2011)

    ADS  Google Scholar 

  63. Fang-Qi Chen, Yang Sun, Peter Ring, Phys. Rev. C 88, 014315 (2013)

    ADS  Google Scholar 

  64. R. Krücken et al., Phys. Rev. Lett. 88, 232501 (2002)

    ADS  Google Scholar 

  65. R.M. Clark et al., Phys. Rev. C 67, 041302 (2003)

    ADS  Google Scholar 

  66. D. Tonev et al., Phys. Rev. C 69, 034334 (2004)

    ADS  Google Scholar 

  67. O. Möller et al., Phys. Rev. C 74, 024313 (2006)

    ADS  Google Scholar 

  68. A. Passoja et al., J. Phys. G 12, 1047 (1986)

    ADS  Google Scholar 

  69. T. Kibédi, R.H. Spear, At. Data Nucl. Data Tables 89, 77 (2005)

    ADS  Google Scholar 

  70. J.L. Wood, E.F. Zganjar, C.A. Costa, K. Heyde, Nucl. Phys. A 651, 323 (1999)

    ADS  Google Scholar 

  71. J.-P. Delaroche et al., Phys. Rev. C 81, 014303 (2010)

    ADS  Google Scholar 

  72. J. Smallcombe et al., Phys. Lett. B 732, 161 (2014)

    ADS  Google Scholar 

  73. S.N.T. Majola, to be published in Phys. Rev. C

  74. F. Iachello, Phys. Rev. Lett. 87, 052502 (2001)

    ADS  Google Scholar 

  75. R.F. Casten, N.V. Zamfir, Phys. Rev. Lett. 87, 052503 (2001)

    ADS  Google Scholar 

  76. W.-T. Chou, Gh Cata-Danil, N.V. Zamfir, R.F. Casten, N. Pietralla, Phys. Rev. C 64, 057301 (2001)

    ADS  Google Scholar 

  77. N. Pietralla, O.M. Gorbachenko, Phys. Rev. C 70, 011304(R) (2004)

    ADS  Google Scholar 

  78. M.A. Caprio, Phys. Rev. C 72, 054323 (2005)

    ADS  Google Scholar 

  79. P.G. Bizzeti, A.M. Bizzeti-Sona, Phys. Rev. C 81, 034320 (2010)

    ADS  Google Scholar 

  80. J.V. Maher, J.R. Erskine, A.M. Friedman, J.P. Schiffer, R.H. Siemssen, Phys. Rev. Lett. 25, 302 (1970)

    ADS  Google Scholar 

  81. R.F. Casten et al., Phys. Lett. B 40, 333 (1972)

    ADS  Google Scholar 

  82. R.E. Griffin, A.D. Jackson, A.B. Volkov, Phys. Lett. B 36, 281 (1971)

    ADS  Google Scholar 

  83. S.K. Abdulvagabova, S.P. Ivanova, N.I. Pyatov, Phys. Lett. B 38, 251 (1972)

    Google Scholar 

  84. D.R. Bès, R.A. Broglia, B. Nilsson, Phys. Lett. B 40, 338 (1972)

    ADS  Google Scholar 

  85. W.I. van Rij, S.H. Kahana, Phys. Rev. Lett. 28, 50 (1972)

    ADS  Google Scholar 

  86. I. Ragnarsson, R.A. Broglia, Nucl. Phys. A 263, 315 (1976)

    ADS  Google Scholar 

  87. J.J. Kolata, M. Oothoudt, Phys. Rev. C 15, 1947 (1977)

    ADS  Google Scholar 

  88. J.D. Garrett et al., Phys. Lett. B 118, 297 (1982)

    ADS  Google Scholar 

  89. J. Simpson et al., Eur. Phys. J. A 1, 267 (1998)

    ADS  Google Scholar 

  90. M. Mustafa et al., Phys. Rev. C 84, 054320 (2011)

    ADS  Google Scholar 

  91. J.M. Rees et al., Phys. Rev. C 83, 044314 (2011)

    ADS  Google Scholar 

  92. L.L. Riedinger et al., Phys. Rev. Lett. 44, 568 (1980)

    ADS  Google Scholar 

  93. H.J. Jensen et al., Z. Phys. A 359, 127 (1997)

    ADS  Google Scholar 

  94. S.I. Miller, in preparation

  95. M.H. Mortensen, R.R. Betts, C.K. Brockelman, Phys. Lett. B 70, 17 (1977)

    ADS  Google Scholar 

  96. R.R. Betts, M.H. Mortensen, Phys. Rev. Lett. 43, 616 (1979)

    ADS  Google Scholar 

  97. M.H. Mortensen, R.R. Betts, C.K. Brockelman, Phys. Rev. C 21, 2288 (1980)

    ADS  Google Scholar 

  98. J.A. Sheikh, G.H. Bhat, Y. Sun, G.B. Vakil, R. Pailt, Phys. Rev. C 77, 034313 (2008)

    ADS  Google Scholar 

  99. W.N. Shelton, C.E. Watson, Phys. Lett. 22, 648 (1966)

    ADS  Google Scholar 

  100. Ch. Hinke et al., Eur. J. Phys. A 30, 357 (2006)

    ADS  Google Scholar 

  101. D.E. Nelson, D.G. Burk, J.C. Waddington, W.B. Cook, Can. J. Phys. 51, 200 (1975)

    Google Scholar 

  102. D.G. Burke, J.C. Waddington, O.P. Jolly, Nucl. Phys. A 688, 716 (2001)

    ADS  Google Scholar 

  103. C.R. Hirning, D.G. Burk, Can. J. Phys. 55, 2288 (1977)

    Google Scholar 

  104. S.J. Freeman et al., Nucl. Phys. A 554, 333 (1993)

    ADS  Google Scholar 

  105. S.J. Freeman et al., Nucl. Phys. A 552, 10 (1993)

    ADS  Google Scholar 

  106. H.F. Wirth et al., Phys. Rev. C 69, 044310 (2004)

    ADS  Google Scholar 

  107. J.H. Bjerregaard, Ole Hanssen, O. Nathan, S. Hinds, Nucl. Phys. 86, 145 (1966)

    Google Scholar 

  108. W. Greiner, J.A. Maruhn, Nuclear Models (Springer, 1996) pp. 158--159

  109. A. Faessler, W. Greiner, Z. Phys. 168, 425 (1962)

    ADS  Google Scholar 

  110. A. Faessler, W. Greiner, Z. Phys. 170, 105 (1962)

    ADS  Google Scholar 

  111. A.S. Davydov, At. Energy Rev. 6, 3 (1968)

    Google Scholar 

  112. K. Schreckenbach, W. Gelletly, Phys. Lett. B 94, 298 (1980)

    ADS  Google Scholar 

  113. I. Alfter, E. Bodenstedt, W. Knichel, J. Schüth, Nucl. Phys. A 635, 273 (1998)

    ADS  Google Scholar 

  114. N.V. Zamfir, R.F. Casten, Phys. Lett. B 260, 265 (1991)

    ADS  Google Scholar 

  115. L. Wilets, M. Jean, Phys. Rev. 102, 788 (1956)

    ADS  Google Scholar 

  116. E.A. McCutchan, D. Bonatsos, N.V. Zamfir, R.F. Casten, Phys. Rev. C 76, 024306 (2007)

    ADS  Google Scholar 

  117. A.S. Davydov, G.F. Fillipov, Nucl. Phys. 8, 237 (1958)

    Google Scholar 

  118. L. Mdletshle et al., Eur. Phys. J. A 54, 176 (2018)

    ADS  Google Scholar 

  119. T. Nikšić, Z.-P. Li, D. Vretenar, J. Meng, P. Ring, Phys. Rev. C 78, 034303 (2009)

    ADS  Google Scholar 

  120. Z.-P. Li, T. Nikšić, D. Vretenar, J. Meng, G. Lalazissis, P. Ring, Phys. Rev. C 79, 054301 (2009)

    ADS  Google Scholar 

  121. P.-W. Zhao, Z.-P. Li, J.-M. Yao, J. Meng, Phys. Rev. C 82, 054319 (2010)

    ADS  Google Scholar 

  122. J.F. Sharpey-Schafer, J. Simpson, Prog. Part. Nucl. Phys. 21, 293 (1988)

    ADS  Google Scholar 

  123. S. Jehangir et al., Phys. Rev. C 97, 014310 (2018)

    ADS  Google Scholar 

  124. N.R. Johnson et al., Phys. Rev. Lett. 40, 151 (1978)

    ADS  Google Scholar 

  125. S.W. Yates et al., Phys. Rev. C 21, 2366 (1980)

    ADS  Google Scholar 

  126. J. Ollier et al., Phys. Rev. C 83, 044309 (2011)

    ADS  Google Scholar 

  127. A.B. Hayes et al., Int. J. Mod. Phys. E 20, 474 (2011)

    ADS  Google Scholar 

  128. D. Ward et al., Nucl. Phys. A 600, 88 (1996)

    ADS  Google Scholar 

  129. G. Gervais et al., Nucl. Phys. A 624, 257 (1997)

    ADS  Google Scholar 

  130. Jian-Guo Wang et al., Nucl. Phys. A 834, 94c (2010)

    ADS  Google Scholar 

  131. J.B. Snyder et al., Phys. Lett. B 723, 61 (2013)

    ADS  Google Scholar 

  132. S. Frauendorf, AIP Conf. Proc. 1753, 030001 (2016)

    Google Scholar 

  133. D.G. Burke, Phys. Rev. Lett. 73, 1899 (1994)

    ADS  Google Scholar 

  134. J.M. Allmond, R. Zaballa, A.M. Oros-Peusquens, W.D. Kulp, J.L. Wood, Phys. Rev. C 78, 014302 (2008)

    ADS  Google Scholar 

  135. T. Kibédi, G.D. Dracoulis, A.P. Byrne, P.M. Davidson, S. Kuyucak, Nucl. Phys. A 567, 183 (1994)

    ADS  Google Scholar 

  136. C.Y. Wu et al., Nucl. Phys. A 607, 178 (1996)

    ADS  Google Scholar 

  137. D.G. Burke, Phys. Lett. B 406, 200 (1997)

    ADS  Google Scholar 

  138. R.D. Bagnal et al., Phys. Rev. C 20, 42 (1979)

    ADS  Google Scholar 

  139. A.A. Phillips et al., Phys. Rev. C 82, 034321 (2010)

    ADS  Google Scholar 

  140. D.G. Burke et al., Phys. Lett. B 78, 48 (1978)

    ADS  Google Scholar 

  141. F. Todd Baker, Nucl. Phys. A 371, 68 (1981)

    ADS  Google Scholar 

  142. F. Todd Baker et al., Nucl. Phys. A 501, 546 (1989)

    ADS  Google Scholar 

  143. D.G. Burke, Phys. Rev. C 66, 039801 (2002)

    ADS  Google Scholar 

  144. C.Y. Wu et al., Phys. Rev. C 66, 039802 (2002)

    ADS  Google Scholar 

  145. J.L. Wood, A.M. Oros-Peusquens, R. Zaballa, J.M. Allmond, Phys. Rev. C 70, 024308 (2004)

    ADS  Google Scholar 

  146. H.G. Börner et al., Phys. Rev. Lett. 66, 691 (1991)

    ADS  Google Scholar 

  147. M. Oshima et al., Nucl. Phys. A 557, 635c (1993)

    ADS  Google Scholar 

  148. X. Wu, A. Aprahamian, J. Castro-Ceron, Cyrus Baktash, Phys. Lett. B 316, 235 (1993)

    ADS  Google Scholar 

  149. X. Wu et al., Phys. Rev. C 49, 1837 (1994)

    ADS  Google Scholar 

  150. D.C. Sousa, L.L. Riedinger, E.C. Funk, J.W. Mihelich, Nucl. Phys. A 238, 365 (1975)

    ADS  Google Scholar 

  151. R.L. West, E.C. Funk, J.W. Mihelich, Phys. Rev. C 18, 679 (1978)

    ADS  Google Scholar 

  152. J.F. Sharpey-Schafer et al., AIP Conf. Proc. 1012, 19 (2008)

    ADS  Google Scholar 

  153. P.E. Garrett et al., Phys. Rev. Lett. 78, 4545 (1997)

    ADS  Google Scholar 

  154. D.V. Freck, I. Wakefield, Nature 193, 669 (1962)

    ADS  Google Scholar 

  155. A.J. Tavendale, G.T. Ewan, Nucl. Instrum. Methods 25, 185 (1963)

    ADS  Google Scholar 

  156. G.T. Ewan, A.J. Tavendale, Nucl. Instrum. Methods 26, 183 (1964)

    ADS  Google Scholar 

  157. G.T. Ewan, A.J. Tavendale, Can. J. Phys. 42, 2286 (1964)

    ADS  Google Scholar 

  158. J. Simpson, J. Phys. Conf. Ser. 606, 012017 (2015)

    Google Scholar 

  159. J. Simpson, Nucl. Instrum. Methods Phys. Res. 668, 26 (2012)

    ADS  Google Scholar 

  160. I-Yang Lee, J. Simpson, Nucl. Phys. News 20, 20 (2010)

    Google Scholar 

  161. H. Rebel et al., Nucl. Phys. A 182, 145 (1972)

    ADS  Google Scholar 

  162. R.R. Chasman, Phys. Rev. C 14, 1935 (1976)

    ADS  Google Scholar 

  163. D. Zawischa, J. Speth, D. Pal, Nucl. Phys. A 311, 455 (1978)

    ADS  Google Scholar 

  164. Masayuki Matsuzaki, Tomoya Ueno, Prog. Theor. Exp. Phys. 2016, 043D03 (2016)

    Google Scholar 

  165. T. Nikšić, D. Vretenar, G.A. Lalazissis, P. Ring, Phys. Rev. Lett. 99, 092502 (2007)

    ADS  Google Scholar 

  166. Fang-Qi Chen, J. Luis Egido, Phys. Rev. C 93, 064313 (2016)

    ADS  Google Scholar 

  167. Fang-Qi Chen, J. Luis Egido, Phys. Rev. C 95, 024307 (2017)

    ADS  Google Scholar 

  168. Kiuck Lee, D.R. Inglis, Phys. Rev. 108, 774 (1957)

    ADS  Google Scholar 

  169. G.A. Leander et al., Nucl. Phys. A 388, 452 (1982)

    ADS  Google Scholar 

  170. P.A. Butler, W. Nazarewicz, Nucl. Phys. A 533, 249 (1991)

    ADS  Google Scholar 

  171. Irshad Ahmad, Peter A. Butler, Annu. Rev. Nucl. Sci. 43, 71 (1993)

    ADS  Google Scholar 

  172. P.A. Butler, W. Nazarewicz, Rev. Mod. Phys. 68, 349 (1996)

    ADS  Google Scholar 

  173. L.P. Gaffney et al., Nature 497, 199 (2013)

    ADS  Google Scholar 

  174. R.H. Spear, W.N. Catford, Phys. Rev. C 41, R1351 (1990)

    ADS  Google Scholar 

  175. R.E. Shamu, E.M. Bernstein, J.J. Ramirez, Ch. Lagrange, Phys. Rev. C 22, 1857 (1980)

    ADS  Google Scholar 

  176. N. Stone, At. Data Nucl. Data Tables 90, 75 (2005)

    ADS  Google Scholar 

  177. Raymond K. Sheline, P.C. Sood, Phys. Rev. C 34, 2362 (1986)

    ADS  Google Scholar 

  178. W. Urban et al., Phys. Lett. B 185, 331 (1987)

    ADS  Google Scholar 

  179. W. Urban, J.C. Bacelar, J. Nyberg, Acta. Phys. Pol. B 32, 2527 (2001)

    ADS  Google Scholar 

  180. E.I. Obiajunwa, L.H. Rosier, J. van de Wiele, Nucl. Phys. A 500, 341 (1989)

    ADS  Google Scholar 

  181. W.R. Phillips et al., Phys. Rev. Lett. 57, 3257 (1986)

    ADS  Google Scholar 

  182. W.R. Phillips et al., Phys. Lett. B 212, 402 (1988)

    ADS  Google Scholar 

  183. S.P. Bvumbi et al., Phys. Rev. C 87, 044333 (2013)

    ADS  Google Scholar 

  184. W. Zhang, Z.P. Li, S.Q. Zhang, J. Meng, Phys. Rev. C 81, 034302 (2010)

    ADS  Google Scholar 

  185. A.A. Sonzogni, Nucl. Data Sheets 93, 599 (2000)

    ADS  Google Scholar 

  186. A. Rodionov, Yu. Khazov, G. Shulyak, Nucl. Data Sheets 136, 163 (2016)

    ADS  Google Scholar 

  187. R. Ibbotson et al., Phys. Rev. Lett. 71, 1990 (1993)

    ADS  Google Scholar 

  188. G.L. Zimba et al., Eur. Phys. J. A 54, 59 (2018)

    ADS  Google Scholar 

  189. A.A. Netshiya, MSc Thesis, University of the Western Cape (2018)

  190. W. Nazarewicz, S.L. Tabor, Phys. Rev. C 45, 2226 (1992)

    ADS  Google Scholar 

  191. L.M. Robledo, G.F. Bertsch, Phys. Rev. C 84, 054302 (2011)

    ADS  Google Scholar 

  192. J. Cavalho, R. Le Blanc, M. Vassanji, D.J. Rowe, J.B. McGrory, Nucl. Phys. A 452, 240 (1986)

    ADS  Google Scholar 

  193. J.A. Sheikh, K. Hara, Phys. Rev. Lett. 82, 3968 (1999)

    ADS  Google Scholar 

  194. Yang Sun et al., Phys. Rev. C 61, 064323 (2000)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. F. Sharpey-Schafer.

Additional information

Communicated by N. Alamanos

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors' comment: The Review has no new data and everything is referenced.]

Publisher's Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharpey-Schafer, J.F., Bark, R.A., Bvumbi, S.P. et al. “Stiff” deformed nuclei, configuration dependent pairing and the \(\beta\) and \(\gamma\) degrees of freedom. Eur. Phys. J. A 55, 15 (2019). https://doi.org/10.1140/epja/i2019-12665-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2019-12665-x

Navigation