Skip to main content
Log in

Reproducing heavy-ion fusion cross sections at extreme sub-barrier energies with a simple formula

Analysis of fusion hindrance with a Gaussian barrier distribution

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract.

Heavy-ion fusion hindrance occurs at extreme sub-barrier energies. This behavior is well reproduced with a simple cross section formula, which was developed by Siwek-Wilczynska et al., based on a single-Gaussian distribution of fusion barrier heights, before the discovery of the hindrance phenomenon. This expression has not yet been widely used and referenced in the literature. An analysis by using this simple formula is presented for 29 systems, from 16O + 18O to 64Ni + 124Sn , all being measured down to less than 10μb. The agreement with the data is even better than the ones from sophisticated Coupled-channels calculations. This simple expression also applies to fusion reactions in lighter systems. The three parameters contained in this formula vary in a relatively smooth fashion over the whole mass range, and can be used to extrapolate cross sections or to obtain an estimate of the excitation function for systems which have not been measured. Extensions and restrictions of this method are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. M.M. Beckerman et al., Phys. Rev. Lett. 45, 1472 (1980)

    Article  ADS  Google Scholar 

  2. M.M. Beckerman, Phys. Rep. 129, 145 (1985)

    Article  ADS  Google Scholar 

  3. R. Vandenbosch, Annu. Rev. Nucl. Part. Sci. 42, 477 (1992)

    Article  ADS  Google Scholar 

  4. N. Rowley, G.R. Satchler, P.H. Stelson, Phys. Lett. B 254, 25 (1991)

    Article  ADS  Google Scholar 

  5. J.R. Leigh et al., Phys. Rev. C 47, 437 (1993)

    Article  ADS  Google Scholar 

  6. J.R. Leigh et al., Phys. Rev. C 52, 3151 (1995)

    Article  ADS  Google Scholar 

  7. M. Dasgupta, D.J. Hinde, N. Rowley, A.M. Stefanini, Annu. Rev. Nucl. Part. Sci. 48, 401 (1998)

    Article  ADS  Google Scholar 

  8. C.L. Jiang et al., Phys. Rev. Lett. 89, 052701 (2002)

    Article  ADS  Google Scholar 

  9. C.L. Jiang, H. Esbensen, B.B. Back, R.V.F. Janssens, K.E. Rehm, Phys. Rev. C 69, 014604 (2004)

    Article  ADS  Google Scholar 

  10. B.B. Back, H. Esbensen, C.L. Jiang, K.E. Rehm, Rev. Mod. Phys. 86, 317 (2014)

    Article  ADS  Google Scholar 

  11. G. Montagnoli, A.M. Stefanini, Eur. Phys. J. A 53, 169 (2017)

    Article  ADS  Google Scholar 

  12. C.H. Dasso, S. Landowne, A. Winther, Nucl. Phys. A 405, 381 (1983)

    Article  ADS  Google Scholar 

  13. C.H. Dasso, S. Landowne, A. Winther, Nucl. Phys. A 407, 221 (1983)

    Article  ADS  Google Scholar 

  14. K. Hagino, N. Takigawa, Prog. Theor. Phys. 128, 1061 (2012)

    Article  ADS  Google Scholar 

  15. J.M. Blatt, V.F. Weisskopf, Theoretical Nuclear Physics (John Wiley and Sons, New York, 1952) p. 346

  16. C.Y. Wong, Phys. Rev. Lett. 31, 766 (1973)

    Article  ADS  Google Scholar 

  17. K. Siwek-Wilczynska, E. Siemaszko, J. Wilczynski, Acta Phys. Pol. B 33, 451 (2002)

    ADS  Google Scholar 

  18. K. Siwek-Wilczynska, J. Wilczynski, Phys. Rev. C 69, 024611 (2004)

    Article  ADS  Google Scholar 

  19. P.H. Stelson et al., Phys. Lett. B 205, 190 (1988)

    Article  ADS  Google Scholar 

  20. C.L. Jiang et al., Phys. Rev. Lett. 93, 012701 (2004)

    Article  ADS  Google Scholar 

  21. S. Mişicu, H. Esbensen, Phys. Rev. Lett. 96, 112701 (2006)

    Article  ADS  Google Scholar 

  22. S. Mişicu, H. Esbensen, Phys. Rev. C 75, 034606 (2007)

    Article  ADS  Google Scholar 

  23. T. Ichikawa, K. Hagino, A. Iwamoto, Phys. Rev. C 75, 057603 (2007)

    Article  ADS  Google Scholar 

  24. T. Ichikawa, K. Hagino, A. Iwamoto, Phys. Rev. Lett. 103, 202701 (2009)

    Article  ADS  Google Scholar 

  25. T. Ichikawa, K. Matsuyanagi, Phys. Rev. C 88, 011602(R) (2013)

    Article  ADS  Google Scholar 

  26. M. Dasgupta et al., Phys. Rev. Lett. 99, 192701 (2007)

    Article  ADS  Google Scholar 

  27. A. Diaz-Torres, Phys. Rev. 82, 054617 (2010)

    ADS  Google Scholar 

  28. A. Diaz-Torres, Phys. Rev. C 78, 064604 (2008)

    Article  ADS  Google Scholar 

  29. C. Simenel, A.S. Umar, K. Godbey, M. Dasgupta, D.J. Hind, Phys. Rev. C 95, 031601(R) (2017)

    Article  ADS  Google Scholar 

  30. A.S. Umar, V.E. Oberacker, Phys. Rev. C 77, 064605 (2007)

    Article  ADS  Google Scholar 

  31. A.S. Umar, V.E. Oberacker, Eur. Phys. J. A 39, 243 (2009)

    Article  ADS  Google Scholar 

  32. O.N. Ghodsi, R. Gharei, Phys. Rev. C 88, 054617 (2017)

    Article  ADS  Google Scholar 

  33. C.R. Morton et al., Phys. Rev. C 60, 044608 (1999)

    Article  ADS  Google Scholar 

  34. A. Shrivastava et al., Phys. Rev. C 96, 034620 (2017)

    Article  ADS  Google Scholar 

  35. C.L. Jiang et al., Phys. Lett. B 640, 18 (2006)

    Article  ADS  Google Scholar 

  36. A. Morsad, J.J. Kolata, R.J. Tighe, X.J. Kong, E.F. Aguilera, J.J. Vega, Phys. Rev. C 41, 988 (1990)

    Article  ADS  Google Scholar 

  37. C.L. Jiang et al., Phys. Rev. Lett. 113, 022701 (2014)

    Article  ADS  Google Scholar 

  38. W.J. Jordan, J.V. Maher, J. Peng, Phys. Lett. 87, 38 (1979)

    Article  Google Scholar 

  39. G. Montagnoli et al., Phys. Rev. C 97, 04617 (2018)

    Article  Google Scholar 

  40. C.L. Jiang et al., Phys. Rev. C 75, 015803 (2007)

    Article  ADS  Google Scholar 

  41. H. Esbensen, C.L. Jiang et al., Phys. Rev. C 79, 064614 (2009)

    Article  ADS  Google Scholar 

  42. J. Thomas, Y.T. Chen, S. Hinds, D. Meredith, M. Olson, Phys. Rev. C 13, 1679 (1986)

    Article  ADS  Google Scholar 

  43. A. Shrivastava et al., Phys. Rev. Lett. 103, 232702 (2009)

    Article  ADS  Google Scholar 

  44. A. Shrivastava et al., Phys. Lett. B 718, 931 (2013)

    Article  ADS  Google Scholar 

  45. G. Montagnoli et al., Phys. Rev. C 90, 044608 (2014)

    Article  ADS  Google Scholar 

  46. C.L. Jiang et al., Phys. Rev. C 78, 017601 (2008)

    Article  ADS  Google Scholar 

  47. C. Jiang et al., Phys. Rev. C 81, 024611 (2010)

    Article  ADS  Google Scholar 

  48. G. Montagnoli et al., Phys. Rev. C 87, 014611 (2013)

    Article  ADS  Google Scholar 

  49. A.M. Stefanini et al., Phys. Rev. C 78, 044607 (2008)

    Article  ADS  Google Scholar 

  50. G. Montagnoli et al., Phys. Rev. C 85, 024607 (2012)

    Article  ADS  Google Scholar 

  51. C.L. Jiang et al., Phys. Rev. C 82, 041601 (2010)

    Article  ADS  Google Scholar 

  52. A.M. Stefanini et al., Phys. Lett. B 679, 95 (2009)

    Article  ADS  Google Scholar 

  53. G. Montagnoli et al., Phys. Rev. C 85, 024607 (2012)

    Article  ADS  Google Scholar 

  54. A.M. Stefanini et al., Phys. Rev. C 82, 014614 (2010)

    Article  ADS  Google Scholar 

  55. A.M. Stefanini et al., Phys. Lett. B 728, 639 (2014)

    Article  ADS  Google Scholar 

  56. W. Reisdorf et al., Nucl. Phys. A 438, 212 (1985)

    Article  ADS  Google Scholar 

  57. W. Reisdorf et al., Nucl. Phys. A 444, 154 (1985)

    Article  ADS  Google Scholar 

  58. K.T. Lesko et al., Phys. Rev. C 34, 2155 (1986)

    Article  ADS  Google Scholar 

  59. C.L. Jiang et al., Phys. Rev. C 91, 044602 (2015)

    Article  ADS  Google Scholar 

  60. K. Daneshar et al., Phys. Rev. C 25, 1342 (1982)

    Article  ADS  Google Scholar 

  61. S. Gary, C. Volant, Phys. Rev. C 25, 1877 (1982)

    Article  ADS  Google Scholar 

  62. R.G. Stokstad, Y. Eisen, S. Kaplanis, D. Pelte, U. Smilansky, I. Tserruya, Phys. Rev. Lett. 41, 465 (1978)

    Article  ADS  Google Scholar 

  63. R.G. Stokstad, Y. Eisen, S. Kaplanis, D. Pelte, U. Smilansky, I. Tserruya, Phys. Rev. C 21, 2427 (1980)

    Article  ADS  Google Scholar 

  64. K. Hagino, N. Rowley, A.T. Kruppa, Comput. Phys. Commun. 123, 143 (1999)

    Article  ADS  Google Scholar 

  65. K. Hagino, CCFULL Home Page, https://doi.org/www.nucl.phys.tohoku.ac.jp/~hagino/ccfull.html

  66. K. Hagino, Phys. Rev. C 93, 061615 (2016)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. L. Jiang.

Additional information

Communicated by P. Capel

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, C.L., Rehm, K.E., Back, B.B. et al. Reproducing heavy-ion fusion cross sections at extreme sub-barrier energies with a simple formula. Eur. Phys. J. A 54, 218 (2018). https://doi.org/10.1140/epja/i2018-12655-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2018-12655-6

Navigation