Skip to main content
Log in

The \(\eta^{\prime}\)-carbon potential at low meson momenta

  • Regular Article - Experimental Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract.

The production of \(\eta^{\prime}\) mesons in coincidence with forward-going protons has been studied in photon-induced reactions on 12C and on a liquid hydrogen (LH2) target for incoming photon energies of 1.3-2.6 GeV at the electron accelerator ELSA. The \(\eta^{\prime}\) mesons have been identified via the \(\eta^{\prime} \rightarrow \pi^{0} \pi^{0}\eta \rightarrow 6 \gamma\) decay registered with the CBELSA/TAPS detector system. Coincident protons have been identified in the MiniTAPS BaF2 array at polar angles of \(2^{\circ} \le \theta_{p} \le 11^{\circ}\). Under these kinematic constraints the \(\eta^{\prime}\) mesons are produced with relatively low kinetic energy (\(\approx 150\) MeV) since the coincident protons take over most of the momentum of the incident-photon beam. For the C-target this allows the determination of the real part of the \(\eta^{\prime}\)-carbon potential at low meson momenta by comparing with collision model calculations of the \(\eta^{\prime}\) kinetic energy distribution and excitation function. Fitting the latter data for \(\eta^{\prime}\) mesons going backwards in the center-of-mass system yields a potential depth of \(V = -(44 \pm 16(stat) \pm 15(syst))\) MeV, consistent with earlier determinations of the potential depth in inclusive measurements for average \(\eta^{\prime}\) momenta of \(\approx 1.1\) GeV/c. Within the experimental uncertainties, there is no indication of a momentum dependence of the \(\eta^{\prime}\)-carbon potential. The LH2 data, taken as a reference to check the data analysis and the model calculations, provide differential and integral cross sections in good agreement with previous results for \(\eta^{\prime}\) photoproduction off the free proton.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. R. Hayano, T. Hatsuda, Rev. Mod. Phys. 82, 2949 (2010)

    Article  ADS  Google Scholar 

  2. S. Leupold, V. Metag, U. Mosel, Int. J. Mod. Phys. 19, 147 (2010)

    Article  ADS  Google Scholar 

  3. E. Oset et al., Int. J. Mod. Phys. E 21, 1230011 (2012)

    Article  ADS  Google Scholar 

  4. H. Nagahiro, S. Hirenzaki, Phys. Rev. Lett. 94, 232503 (2005)

    Article  ADS  Google Scholar 

  5. H. Gilg et al., Phys. Rev. C 62, 025201 (2000)

    Article  ADS  Google Scholar 

  6. K. Itahashi et al., Phys. Rev. C 62, 025202 (2002)

    Article  ADS  Google Scholar 

  7. H. Geissel et al., Phys. Rev. Lett. 88, 122301 (2002)

    Article  ADS  Google Scholar 

  8. K. Suzuki et al., Phys. Rev. Lett. 92, 072302 (2004)

    Article  ADS  Google Scholar 

  9. P. Kienle, T. Yamazaki, Prog. Part. Nucl. Phys. 52, 85 (2004)

    Article  ADS  Google Scholar 

  10. E. Friedman, A. Gal, Phys. Rep. 452, 89 (2007)

    Article  ADS  Google Scholar 

  11. H. Nagahiro, M. Takizawa, S. Hirenzaki, Phys. Rev. C 74, 045203 (2006)

    Article  ADS  Google Scholar 

  12. V. Metag, M. Nanova, E.Ya. Paryev, Prog. Part. Nucl. Phys. 97, 199 (2017)

    Article  ADS  Google Scholar 

  13. CBELSA/TAPS Collaboration (M. Nanova et al.), Phys. Lett. B 727, 417 (2013)

    Article  Google Scholar 

  14. CBELSA/TAPS Collaboration (M. Nanova et al.), Phys. Rev. C 94, 025205 (2016)

    Article  ADS  Google Scholar 

  15. CBELSA/TAPS Collaboration (M. Nanova et al.), Phys. Lett. B 710, 600 (2012)

    Article  ADS  Google Scholar 

  16. V. Metag, Hyperfine Interact. 234, 25 (2015)

    Article  ADS  Google Scholar 

  17. M. Nanova, V. Metag, EPJ Web of Conferences 130, 02007 (2016)

    Article  Google Scholar 

  18. CBELSA/TAPS Collaboration (S. Friedrich et al.), Eur. Phys. J. A 52, 297 (2016)

    Article  Google Scholar 

  19. E.Ya. Paryev, J. Phys. G: Nucl. Part. Phys. 40, 025201 (2013)

    Article  ADS  Google Scholar 

  20. E. Hernandez, E. Oset, Z. Phys. A 341, 201 (1992)

    Article  ADS  Google Scholar 

  21. D. Cabrera et al., Nucl. Phys. A 733, 130 (2004)

    Article  ADS  Google Scholar 

  22. O. Buss et al., Phys. Rep. 512, 1 (2012)

    Article  ADS  Google Scholar 

  23. J. Weil, U. Mosel, V. Metag, Phys. Lett. B 723, 120 (2013)

    Article  ADS  Google Scholar 

  24. E.Ya. Paryev, J. Phys. G: Nucl. Part. Phys. 43, 015106 (2016)

    Article  ADS  Google Scholar 

  25. CBELSA/TAPS Collaboration (S. Friedrich et al.), Phys. Lett. B 736, 26 (2014)

    Article  ADS  Google Scholar 

  26. D. Husmann, W.J. Schwille, Phys. Bl. 44, 40 (1988)

    Article  Google Scholar 

  27. W. Hillert, Eur. Phys. J. A 28, 139 (2006)

    Article  ADS  Google Scholar 

  28. The Crystal Barrel Collaboration (E. Aker et al.), Nucl. Instrum. Methods A 321, 69 (1992)

    Article  ADS  Google Scholar 

  29. R. Novotny, IEEE Trans. Nucl. Sci. 38, 379 (1991)

    Article  ADS  Google Scholar 

  30. A.R. Gabler et al., Nucl. Instrum. Methods A 346, 168 (1994)

    Article  ADS  Google Scholar 

  31. G. Suft et al., Nucl. Instrum. Methods A 538, 416 (2005)

    Article  ADS  Google Scholar 

  32. CBELSA/TAPS Collaboration (A. Thiel et al.), Eur. Phys. J. A 53, 8 (2017)

    Article  Google Scholar 

  33. Particle Data Group (K.A. Olive et al.), Chin. Phys. C 38, 090001 (2014)

    Article  Google Scholar 

  34. F. Afzal, JPS Conf. Proc. 10, 032006 (2016)

    Google Scholar 

  35. CBELSA/TAPS Collaboration (V. Crede et al.), Phys. Rev. C 80, 055202 (2009)

    Article  ADS  Google Scholar 

  36. CBELSA/TAPS Collaboration (I. Jaegle et al.), Eur. Phys. J. A 47, 11 (2011)

    Article  Google Scholar 

  37. C. Ciofi degli Atti, S. Simula, Phys. Rev. C 53, 1689 (1996)

    Article  ADS  Google Scholar 

  38. R. Brun, GEANT, Cern/DD/ee/84-1 (1986)

  39. T. Falter, S. Leupold, U. Mosel, Phys. Rev. C 64, 024608 (2001)

    Article  ADS  Google Scholar 

  40. N. Bianchi et al., Phys. Rev. C 54, 1688 (1996)

    Article  ADS  Google Scholar 

  41. V. Muccifora et al., Phys. Rev. C 60, 064616 (1999)

    Article  ADS  Google Scholar 

  42. V.L. Kashevarov et al., Phys. Rev. Lett. 118, 212001 (2017)

    Article  ADS  Google Scholar 

  43. S.V. Efremov, E.Ya. Paryev, Eur. Phys. J. A 1, 99 (1998)

    Article  ADS  Google Scholar 

  44. Z. Rudy et al., Eur. Phys. J. A 15, 303 (2002)

    Article  ADS  Google Scholar 

  45. Y. Tanaka et al., Phys. Rev. Lett. 117, 202501 (2016)

    Article  ADS  Google Scholar 

  46. H. Nagahiro et al., Phys. Rev. C 87, 045201 (2013)

    Article  ADS  Google Scholar 

  47. N. Muramatsu, Few-Body Syst. 54, 997 (2013)

    Article  ADS  Google Scholar 

  48. V. Metag, approved proposal ELSA/03-2012-BGO-OD

Download references

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to M. Nanova.

Additional information

Communicated by H. Stroeher

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

The CBELSA/TAPS Collaboration., Nanova, M., Friedrich, S. et al. The \(\eta^{\prime}\)-carbon potential at low meson momenta. Eur. Phys. J. A 54, 182 (2018). https://doi.org/10.1140/epja/i2018-12639-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2018-12639-6

Navigation