Skip to main content
Log in

Experimental determination of reference pulses for highly segmented HPGe detectors and application to Pulse Shape Analysis used in \(\gamma\)-ray tracking arrays

  • Regular Article - Experimental Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract.

For the first time, bases of signals delivered by highly segmented HPGe detectors, for identified hit locations, have been determined in situ, that is in the actual accelerator-target-detection system conditions corresponding to data acquisition during a physics experiment. As a consequence, these bases include all the genuine features and alterations of the signals induced by the experimental setup, e.g. diaphony, electronic response, specificity of individual crystals. The present pulse shape bases were constructed using calibration source data taken at the beginning of the AGATA campaign at GANIL. An experiment performed at GANIL using the AGATA \(\gamma\)-ray detector together with the VAMOS spectrometer was used to validate the bases. The performance of the bases when used for pulse-shape analysis has been compared to the performance of the standard bases, composed of pulse shapes generated by a computer simulation used for AGATA. This is done by comparing the Doppler correction capability. The so-called Jacobian method used to generate the in situ bases also produces correlations that can be applied to locate in a direct way (no search algorithm) the location where a \(\gamma\)-ray interacted given that only one segment is hit. As about 50% of all pulse-shape analysis is performed on crystals with only one segment hit this will allow for a large reduction in the needed computer power. Different ways to improve the results of this prospective work are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Akkoyun et al., Nucl. Instrum. Methods Phys. Res. A 668, 26 (2012)

    Article  ADS  Google Scholar 

  2. I. Lee et al., Nucl. Phys. A 746, 255 (2004)

    Article  ADS  Google Scholar 

  3. A. Gadea et al., Nucl. Instrum. Methods Phys. Res. A 654, 88 (2011)

    Article  ADS  Google Scholar 

  4. N. Pietralla et al., EPJ Web of Conferences 66, 02083 (2014)

    Article  Google Scholar 

  5. E. Clément et al., Nucl. Instrum. Methods Phys. Res. A 855, 1 (2017)

    Article  ADS  Google Scholar 

  6. A. Gadea et al., Eur. Phys. J. A 20, 193 (2003)

    Article  ADS  Google Scholar 

  7. J. Simpson et al., Acta Phys. Hung. 11, 159 (2000)

    Google Scholar 

  8. H. Wollersheim et al., Nucl. Instrum. Methods Phys. Res. A 537, 637 (2005)

    Article  ADS  Google Scholar 

  9. R. Venturelli, D. Bazzacco, LNL Annual Report (2004) p. 220

  10. B. Bruyneel, B. Birkenbach, P. Reiter, Eur. Phys. J. A 52, 70 (2016)

    Article  ADS  Google Scholar 

  11. B. Bruyneel, P. Reiter, G. Pascovici, Nucl. Instrum. Methods Phys. Res. A 569, 764 (2006)

    Article  ADS  Google Scholar 

  12. B. Bruyneel, B. Birkenbach, P. Reiter, Nucl. Instrum. Methods Phys. Res. A 641, 92 (2011)

    Article  ADS  Google Scholar 

  13. B. Birkenbach et al., Nucl. Instrum. Methods Phys. Res. A 640, 176 (2011)

    Article  ADS  Google Scholar 

  14. B. Bruyneel et al., Nucl. Instrum. Methods Phys. Res. A 599, 196 (2009)

    Article  ADS  Google Scholar 

  15. A. Wiens et al., Eur. Phys. J. A 49, 47 (2013)

    Article  ADS  Google Scholar 

  16. F. Recchia et al., Nucl. Instrum. Methods Phys. Res. A 604, 555 (2009)

    Article  ADS  Google Scholar 

  17. P.-A. Söderström et al., Nucl. Instrum. Methods Phys. Res. A 638, 96 (2011)

    Article  ADS  Google Scholar 

  18. T. Steinbach et al., Eur. Phys. J. A 53, 23 (2017)

    Article  ADS  Google Scholar 

  19. G. Schmid et al., Nucl. Instrum. Methods Phys. Res. A 430, 69 (1999)

    Article  ADS  Google Scholar 

  20. F. Recchia et al., Nucl. Instrum. Methods Phys. Res. A 604, 60 (2009)

    Article  ADS  Google Scholar 

  21. C. Michelagnoli, in preparation

  22. A. Boston et al., Nucl. Instrum. Methods Phys. Res. B 261, 1098 (2007)

    Article  ADS  Google Scholar 

  23. L. Nelson et al., Nucl. Instrum. Methods Phys. Res. A 573, 153 (2007)

    Article  ADS  Google Scholar 

  24. T. Ha et al., Nucl. Instrum. Methods Phys. Res. A 697, 123 (2013)

    Article  ADS  Google Scholar 

  25. S. Martín, B. Quintana, D. Barrientos, Nucl. Instrum. Methods Phys. Res. A 823, 32 (2016)

    Article  ADS  Google Scholar 

  26. F. Crespi et al., Nucl. Instrum. Methods Phys. Res. A 593, 440 (2008)

    Article  ADS  Google Scholar 

  27. C. Domingo-Pardo et al., Nucl. Instrum. Methods Phys. Res. A 643, 79 (2011)

    Article  ADS  Google Scholar 

  28. N. Goel et al., Nucl. Instrum. Methods Phys. Res. A 652, 591 (2011)

    Article  ADS  Google Scholar 

  29. M. Ginsz, Characterization of high-purity, multi-segmented germanium detectors, PhD Thesis, Université de Strasbourg, Ecole doctorale de physique et chimie physique, Institut Pluridisciplinaire Hubert Curien, UMR 7178 CNRS/IN2P3 (2015)

  30. P. Désesquelles et al., Phys. Rev. C 62, 024614 (2000)

    Article  ADS  Google Scholar 

  31. P. Désesquelles, Nucl. Instrum. Methods Phys. Res. A 654, 324 (2011)

    Article  ADS  Google Scholar 

  32. P. Désesquelles et al., Nucl. Instrum. Methods Phys. Res. A 729, 198 (2013)

    Article  ADS  Google Scholar 

  33. Second AGATA-GRETINA tracking arrays collaboration meeting, private communication (2018)

  34. E. Farnea et al., Nucl. Instrum. Methods Phys. Res. A 621, 331 (2010)

    Article  ADS  Google Scholar 

  35. N. Lalović et al., Nucl. Instrum. Methods Phys. Res. A 806, 258 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  36. S. Pullanhiotan, M. Rejmund, A. Navin, W. Mittig, S. Bhattacharyya, Nucl. Instrum. Methods Phys. Res. A 593, 343 (2008)

    Article  ADS  Google Scholar 

  37. M. Vandebrouck et al., Nucl. Instrum. Methods Phys. Res. A 812, 112 (2016)

    Article  ADS  Google Scholar 

  38. M. Rejmund et al., Nucl. Instrum. Methods Phys. Res. A 646, 184 (2011)

    Article  ADS  Google Scholar 

  39. J. Dudouet et al., Phys. Rev. Lett. 118, 162501 (2017)

    Article  ADS  Google Scholar 

  40. B. Singh, Z. Hu, Nucl. Data Sheets 98, 335 (2003)

    Article  ADS  Google Scholar 

  41. L. Bettermann et al., Phys. Rev. C 82, 044310 (2010)

    Article  ADS  Google Scholar 

  42. Y.H. Kim et al., Eur. Phys. J. A 53, 162 (2017)

    Article  ADS  Google Scholar 

  43. B. Bruyneel et al., Eur. Phys. J. A 49, 61 (2013)

    Article  ADS  Google Scholar 

  44. I. Doxas, C. Nieter, D. Radford, K. Lagergren, J.R. Cary, Nucl. Instrum. Methods Phys. Res. A 580, 1331 (2007)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Ljungvall.

Additional information

Communicated by C. Ur

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H.J., Ljungvall, J., Michelagnoli, C. et al. Experimental determination of reference pulses for highly segmented HPGe detectors and application to Pulse Shape Analysis used in \(\gamma\)-ray tracking arrays. Eur. Phys. J. A 54, 198 (2018). https://doi.org/10.1140/epja/i2018-12636-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2018-12636-9

Navigation