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Abstract. The beam energy dependence of v4 (the quadrupole moment of the transverse radial flow) is
sensitive to the nuclear equation of state (EoS) in mid-central Au + Au collisions at the energy range
of 3 <

√
sNN < 30 GeV, which is investigated within the hadronic transport model JAM. Different

equations of state, namely, a free hadron gas, a first-order phase transition and a crossover are compared.
An enhancement of v4 at

√
sNN ≈ 6 GeV is predicted for an EoS with a first-order phase transition. This

enhanced v4 flow is driven by both the enhancement of v2 as well as the positive contribution to v4 from
the squeeze-out of spectator particles which turn into participants due to the admixture of the strong
collective flow in the shocked, compressed nuclear matter.

The azimuthal distribution of particles emitted, in high
energy heavy-ion collisions, contains important informa-
tion about the bulk properties of strongly interacting mat-
ter [1–8]. The azimuthal momentum distribution of parti-
cles can be expressed as a Fourier series [9–11],

E
d3N

d3p
=

1
2π

d2N

pT dpT dy

(
1 +

∞∑
n=1

2vn cos(n[φ − Φn])

)
,

(1)
where φ is the azimuthal angle with respect to the event
plane Φn, which is estimated experimentally in various
ways. The harmonic flow coefficients

vn = 〈cos(n[φ − Φn])〉 (2)

measure the strength of the system response to the ini-
tial coordinate space anisotropy and fluctuations in the
collision zone.

Anisotropic flow is generated by the participant pres-
sure [1,2] during the early stages of the collisions, there-
fore, it is considered a sensitive messenger of the equation
of state (EoS) [1–8]. A large elliptic flow has been observed
in RHIC and LHC experiments, and is in good agreement
with hydrodynamical simulations [12–18]. Hydrodynami-
cal predictions revealed that the study of v4 contains im-
portant information about the collision dynamics [19–23].
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Recently, higher order coefficients vn have been measured
at RHIC and LHC [24–26].

To investigate the phase structure of QCD, both the
beam energy-, centrality-, and system size- dependence are
studied to access the different regions of T -μB phase dia-
gram [27]. In particular, the search for a first-order phase
transition and the critical end point at high baryon den-
sity is a challenging goal of high energy heavy-ion colli-
sions [28–31].

At lower beam energies (
√

sNN < 10GeV), the
strength of the elliptic flow is determined by the in-
terplay between out-of-plane (squeeze-out) and in-plane
emission [4,32]. In a previous work we predicted a first-
order phase transition [33,34] will cause an enhancement
of the elliptic flow v2 as function of the beam energy by
the suppression of the squeeze-out due to the softening of
EoS [35].

Does this enhancement of v2 suggest that v4 is also
enhanced in the vicinity of a first-order phase transi-
tion? This letter presents the beam energy dependence
of v4 as calculated with the microscopic transport model
JAM [36], using the modified scattering style method [37,
38] and confirms our conjecture. In JAM, particle produc-
tion is modeled by the excitations of hadronic resonances
and strings, and their decays in a similar way as in the
RQMD and UrQMD models [39–41]. Secondary products
are allowed to scatter again, which generates collective
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effects within our approach. In the standard cascade ver-
sion of the model, one usually chooses the azimuthal scat-
tering angle randomly for any two-body scattering. (The
effects of a preserved two-body reaction plane have been
studied in ref. [42]). Thus, cascade simulations yield the
free-hadronic gas EoS in equilibrium, as then two-body
scatterings, on average, do not generate additional pres-
sure. In our approach, the pressure of the system is con-
trolled by changing the scattering style in the two-body
collision terms. It is well known that an attractive orbit
reduces the pressure, while repulsive orbit enhances the
pressure [43,44]. Thus, the pressure is controlled by ap-
propriately choosing the azimuthal angle in the two-body
scatterings. Specifically, the pressure difference from the
free streaming pressure ΔP is obtained by the following
constraints [45]:

ΔP =
ρ

3(δτi + δτj)
(p′

i − pi) · (ri − rj), (3)

where ρ is the local particle density and δτi is the proper
time interval of the i-th particle between successive col-
lisions, (p′

i − pi) is the momentum change and ri is the
coordinate of the i-th particle. Momenta and coordinates
in eq. (3) refer to the values in the c.m. frame of the re-
spective binary collisions. We had demonstrated that a
given EoS can be simulated by choosing the azimuthal
angle according to the constraint in eq. (3) in the two-
body scattering process [38]. We note that the total cross
section and scattering angle of the two-body scattering are
not changed by this method; the only modification is the
choice of the azimuthal angle.

In this work, we use the same EoS as developed and
used in ref. [38] to simulate both the conjectured first-
order phase transition (1OPT) and also the alternative
crossover transition (X-over). The EoS with a first-order
phase transition (EoS-Q) [19,46] is constructed by match-
ing a free, massless quark-gluon phase with the bag con-
stant B1/4 = 220MeV with the hadron gas EoS. In the
hadronic gas phase, hadron resonances with mass up to
2GeV are included, with a repulsive, baryon density ρB

dependent mean field potential V (ρB) = 1
2Kρ2

B , with
K = 0.45GeV fm3. For the crossover EoS, we use the chi-
ral model EoS from ref. [47–49], where the EoS at vanish-
ing and at finite baryon density is consistent with a smooth
crossover transition, i.e. this EoS is consistent with recent
lattice QCD results.

For all presented results we compute v4 with respect to
the reaction plane Φn = ΦRP , where ΦRP is the reaction
plane angle of the collision. As usual, the reaction plane
anisotropies in the even-order Fourier coefficients are in
good agreement with the anisotropies taken with respect
to the event plane, while odd-order Fourier coefficients are
generated by event-by-event fluctuations.

Figure 1 shows the beam energy dependence of v4, for
charged particles at mid-rapidity |η| < 1.0 in mid-central
Au + Au collisions from the JAM model with the cas-
cade mode, JAM with the first-order EoS (JAM/1OPT),
and a crossover EoS (JAM/X-over). The effects of our
three different EoS on the v4 at higher beam energy

Fig. 1. Beam energy dependence of the v4 for charged hadrons
at |η| < 1.0 in mid-central Au+Au collisions (4.6 ≤ b ≤ 9.4 fm)
from the JAM cascade mode (squares), JAM with first-order
EoS (triangles), and crossover EoS (circles).

√
sNN > 10GeV are quite similar, in contrast to the high

baryon density, i.e. at
√

sNN < 10GeV, where the effect
of the EoS is very strong. The cascade mode results do
not show any clear maximum or bump in the beam de-
pendence of the v4. The calculations using an EoS with
a first-order phase transition and those with a crossover
transition exhibit an enhancement of v4 relative to the
cascade result at 5GeV, a factor of two for the 1OPT
case, and an inversion of sign of v4 at 3GeV for the X-
over case. JAM/1OPT shows a strong bump around the
beam energy of

√
sNN ≈ 6GeV. A similar enhancement

was observed in the case of v2 for the 1OPT mode [34].
To understand the collision dynamics which enhances

both the v2 and the v4, we consider the effects of spec-
tator interactions: out-of-plane emission (squeeze-out) is
mainly driven by the pressure release perpendicular to the

spectator plane, which yields the negative v2 =
〈

p2
x−p2

y

p2
T

〉
at lower beam energies. In the beam energy range of
3 <

√
sNN < 10GeV, the cancellation between the in-

plane flow (px) and the out-of-plane flow (py) determines
the final value of v2. Thus, if the spectator-matter inter-
action is neglected, the elliptic flow is strongly positive.
To see the effects of spectator interactions on the flows
quantitatively, we perform the calculations in which in-
teractions with “spectator nucleons” are disabled, where
“spectator nucleons” are defined as the nucleons which
are not in the list of initial collisions; collisions of nucle-
ons which are initially located outside the overlap region
of the two colliding nuclei therefore are excluded in the
calculations without spectator matter.

Figure 2 compares the calculations of flow with and
without “spectator nucleons”. If the EoS with the first-
order phase transition is employed, the effect of spectator
shadowing is smaller than in the cascade mode, as the
pressure is significantly smaller and, hence, the accelera-
tion of the stopped matter is less for this softest equation
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Fig. 2. Beam energy dependence of the v2- (left panel) and the v4 (right panel) coefficients in mid-central Au + Au collisions,
with- and without spectator interactions, are compared to the different EoS in JAM simulations.

Fig. 3. Same as fig. 1, but for the v4/(v2)
2 ratio of charged

particles with (upper panel) and without spectator matter in-
teractions (lower panel).

of state —then the system remains in this low pressure
region for a long time reached in the system. This is the
origin of the enhancement of v2 if there is a first-order
phase transition.

In the following we will discuss the effects of the spec-
tator matter on v4: the elliptic flow v2 is positive in the
case of stronger in-plane emission, see the left-hand side
of fig. 2, while v2 is negative for predominant out-of-plane
emission at

√
sNN < 3GeV. On the other hand, v4 is pos-

itive, and large for both, in-plane and out-of-plane emis-
sion. Thus, spectator shadowing will enhance the v4 value.
Thus, it is indeed seen in fig. 2 (right panel) if the spec-
tator interactions are neglected, v4 is not suppressed, up
to

√
sNN = 6GeV. In the case of a first-order phase tran-

sition, v4 does increase, both with and without specta-
tor interactions. At the lower beam energies, v4 decreases
for both calculations, with and without spectator inter-
actions, in contrast to v2, which increases at lower ener-
gies if the spectator interactions are neglected. Here, par-
ticle emission is not so strongly directed to the in-plane
direction, which decreases the v4 at lower beam energies√

sNN < 5GeV. One should note that at even lower beam
energies

√
sNN ≤ 4GeV the effects of nuclear potentials

need to be taken into account for quantitative predictions
on the v4.

The harmonic v4 is generated both by the intrinsic v2

and by the forth-order moment of the collective flow [21–
23]. Within ideal fluid dynamics (and without any fluc-
tuations), the elliptic flow contribution to v4 is simply
given by v4 = 0.5(v2)2 [21–23]. Hence, the ratio v4/(v2)2
contains valuable information about the intrinsic collision
dynamics. Experimental data show that v4 is about dou-
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ble the ideal hydro values, v4 ≈ (v2)2 at RHIC [24,50–52].
Note that the PHSD results show a fourfold higher value,
v4/(v2)2 ≈ 2 [53], for a wide range of beam energies in
min-bias Au + Au collisions.

Figure 3 shows the beam energy dependence of the
v4/(v2)2 ratio, it stands close to 0.75 at 3GeV, then rises,
and flatters to a constant value of 0.75 at beam energies
of

√
sNN > 10GeV, with a slight increase around 6GeV.

Calculations where spectator matter interactions are ne-
glected yield smaller values v4/(v2)2 ∼ 0.5 at moderate
energies, but also approach 0.75 at ∼ 6GeV, and above.
This indicates that the v4 is dominated by the v2 com-
ponent as without spectator shadowing there exists no
squeeze-out effect. Actually, the beam energy dependence
of v2 exhibits a similar dependence as v4, in the simula-
tions without spectator matter, as can be seen in fig. 2.

In summary, we have studied the beam energy depen-
dence of the fourth harmonics v4 for charged particles in
mid-central Au + Au collisions at 3 <

√
sNN < 30GeV.

An enhancement of v4 around beam energies of 6GeV
is predicted if and only if a first-order phase transition
is present —hence, this can serve as a clean signal. The
enhancement of v2 is caused by the weaker squeeze-out
effects exerted by the spectator matter, due to the soft
EoS. An enhancement of v4 comes from the enhancement
of v2 itself as well as from the positive contributions from
the squeeze-out.

Predicted v4 signal can be studied experimentally at
future experiments such as RHIC-BESII [54], FAIR [55,56]
NICA [57], and J-PARC-HI [58,59], which offer the best
opportunities to explore the compressed baryonic matter,
and reveal the phase structure of QCD.
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