Skip to main content

Advertisement

Log in

Effect of different nuclear density approximations on fusion dynamics within Skyrme Energy Density Formalism

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract.

The role of different density approximations such as frozen, sudden and modified sudden, investigated within the Skyrme Energy Density Formalism (SEDF), is compared with the phenomenological relaxed-density approach for Ni-based reactions. These approximations give different ways in which individual densities of projectile and target can be added for obtaining compound nucleus density. For the 58Ni + 58Ni reaction, unlike sudden, the frozen density approximation is known to give the realistic barrier parameters (Nucl. Phys. A 870-871, 42 (2011)) and addresses the experimental data with the use of the extended \( \ell\) -summed Wong model. In view of this, the barrier parameters within the sudden approximation are obtained, by modifying the central density term as an independent function of the surface thickness factor, which in turn, fits the data nicely at sub barrier energies. In comparison to this, the largest barrier height of the phenomenological potential of relaxed-density advocates the possibility of fusion hindrance. Additionally, for the 18O and 40Ca + 58Ni reactions, the frozen and modified sudden approximations address the data at below barrier-energies. For the case of a heavier-mass system, the barrier parameters cannot be extracted due to the disappeared pocket for the case of sudden and modified sudden density approximations. In such situation, the frozen and relaxed-density approaches behave in a similar manner and show a better fit to the data using the extended \( \ell\) -summed Wong formula. The \( \ell\)-values are extracted using the sharp cut-off model for above-barrier energies and extrapolated at lower energies. Among the chosen approximations, the frozen approximation seems to provide a better option for the reactions considered from different mass regions. Further, on the basis of frozen and phenomenological approaches, the reduced cross-sections are calculated and compared with the Universal Fusion Function (UFF) for symmetric and asymmetric choices of nuclear partners.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. T.H.R. Skyrme, Philos. Mag. 1, 1043 (1956)

    Article  ADS  Google Scholar 

  2. T.H.R. Skyrme, Nucl. Phys. 9, 615 (1959)

    Article  Google Scholar 

  3. K.A. Brueckner, J.R. Buchler, M. Kelley, Phys. Rev. 173, 944 (1968)

    Article  ADS  Google Scholar 

  4. D. Vautherin, D.M. Brink, Phys. Rev. C 5, 626 (1972)

    Article  ADS  Google Scholar 

  5. Fl. Stancu, D.M. Brink, Nucl. Phys. A 270, 236 (1976)

    Article  ADS  Google Scholar 

  6. I. Dutt, R.K. Puri, Phys. Rev. C 81, 044615 (2010)

    Article  ADS  Google Scholar 

  7. R. Kumar, M.K. Sharma, R.K. Gupta, Nucl. Phys. A 870-871, 42 (2011)

    Article  ADS  Google Scholar 

  8. Li Guo-Qiang, J. Phys. G: Nucl. Part. Phys. 17, 1 (1991)

    Article  ADS  Google Scholar 

  9. R. Kumar, Phys. Rev. C 84, 044613 (2011)

    Article  ADS  Google Scholar 

  10. M. Brack, C. Guet, H.-B. Hakansson, Phys. Rep. 123, 275 (1985)

    Article  ADS  Google Scholar 

  11. T. Ichikawa, Phys. Rev. C 92, 064604 (2015)

    Article  ADS  Google Scholar 

  12. V.M. Strutinsky, A.G. Magner, V.Yu. Denisov, Z. Phys. A 322, 149 (1985)

    Article  ADS  Google Scholar 

  13. E. Chabanat et al., Nucl. Phys. A 635, 231 (1998)

    Article  ADS  Google Scholar 

  14. V.Yu. Denisov, Phys. Rev. C 91, 024603 (2015)

    Article  ADS  Google Scholar 

  15. M. Beckerman et al., Phys. Rev. C 23, 4 (1981)

    Article  Google Scholar 

  16. A.M. Borges et al., Phys. Rev. C 46, 6 (1992)

    Article  Google Scholar 

  17. D. Bourgin et al., Phys. Rev. C 90, 044610 (2014)

    Article  ADS  Google Scholar 

  18. Z. Kohley et al., Phys. Rev. Lett. 107, 202701 (2011)

    Article  ADS  Google Scholar 

  19. C.Y. Wong, Phys. Rev. Lett. 31, 12 (1973)

    Google Scholar 

  20. R. Kumar, M. Bansal, S.K. Arun, R.K. Gupta, Phys. Rev. C 80, 034618 (2009)

    Article  ADS  Google Scholar 

  21. V.V. Sargsyan et al., Phys. Rev. C 95, 054619 (2017)

    Article  ADS  Google Scholar 

  22. P. Chattopadhyay, R.K. Gupta, Phys. Rev. C 30, 1191 (1984)

    Article  ADS  Google Scholar 

  23. J. Blocki et al., Ann. Phys. 105, 427 (1977)

    Article  ADS  Google Scholar 

  24. R.K. Gupta, D. Singh, W. Greiner, Phys. Rev. C 75, 024603 (2007)

    Article  ADS  Google Scholar 

  25. H. Dries et al., At. Data Nucl. Tables 36, 495 (1987)

    Article  ADS  Google Scholar 

  26. D.L. Hill, J.A. Wheeler, Phys. Rev. 89, 5 (1953)

    Google Scholar 

  27. Z. Kohley et al., Phys. Rev. Lett. 107, 202701 (2011)

    Article  ADS  Google Scholar 

  28. H.A. Aljuwair et al., Phys. Rev. C 30, 1223 (1984)

    Article  ADS  Google Scholar 

  29. R. Vandenbosch et al., J. Phys. G 23, 1303 (1997)

    Article  ADS  Google Scholar 

  30. H. Timmers et al., Phys. Lett. B 399, 35 (1997)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shivani Jain.

Additional information

Communicated by M. Bender

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jain, S., Kumar, R. & Sharma, M.K. Effect of different nuclear density approximations on fusion dynamics within Skyrme Energy Density Formalism. Eur. Phys. J. A 54, 203 (2018). https://doi.org/10.1140/epja/i2018-12625-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2018-12625-0

Navigation