Skip to main content
Log in

Calculation of fission product yields for uranium isotopes by using a semi-empirical model

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract.

A semi-empirical model for calculating the fission product yields (FPY) of neutron induced fissions of uranium isotopes is developed, where the FPY are assumed to be proportional to the level density of a microcanonical ensemble of a compound nucleus at the fission barrier. The fission height that determines the level density is modeled as a sum of two parts; a symmetric part and an asymmetric part. The origin of the symmetric part can be attributed to the liquid drop model, and that of the asymmetric part to the shell effect in the fission products. Our model has essentially just seven adjustable parameters. They are fitted to the ENDF/B-VII.1 fission yield data of various uranium isotopes for the mass number ranging from 232 to 238 induced by thermal and fast (500 keV) neutrons. Five of the resulting parameters are nearly independent of the mass number of the uranium isotopes. Two parameters which change with the mass number of the uranium isotopes can be expressed as a linear function of the mass number. The FPY calculated from our model are found to be in a good agreement with both the ENDF and experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. J. Katakura, JENDL FP decay data file 2011 and fission yields data file 2011, JAEA-Data/Code 2011-025, (Japan Atomic Energy Agency, 2011)

  2. N. Schunck, D. Duke, H. Carr, A. Knoll, Phys. Rev. C 90, 054305 (2014)

    Article  ADS  Google Scholar 

  3. D. Regnier, N. Dubray, N. Schunck, M. Verrière, Phys. Rev. C 93, 054611 (2016)

    Article  ADS  Google Scholar 

  4. Y. Aritomo, S. Chiba, Phys. Rev. C 88, 044614 (2013)

    Article  ADS  Google Scholar 

  5. J. Randrup, P. Möller, A.J. Sierk, Phys. Rev. C 84, 034613 (2011)

    Article  ADS  Google Scholar 

  6. K.-H. Schmidt, B. Jurado, General view on the progress in nuclear fission: a review, HAL: in2p3-01314814 (2016)

  7. H.J. Krappe, K. Pomorski, Theory of Nuclear Fission, Lect. Notes Phys., Vol. 838 (Springer, Berlin, 2012)

  8. N. Schunck, L.M. Robledo, Rep. Prog. Phys. 79, 116301 (2016)

    Article  ADS  Google Scholar 

  9. A.R. de L. Musgrove, J.L. Cock, G.D. Trimble, Prediction of unmeasured fission product yields, IAEA-169, Vol. 2 (International Atomic Energy Agency, 1974) pp. 163--200

  10. J. Benlliure, A. Grewe, M. de Jong, K.-H. Schmidt, S. Zhdanov, Nucl. Phys. A 628, 458 (1998)

    Article  ADS  Google Scholar 

  11. S.I. Mulgin, K.-H. Schmidt, A. Grewe, S.V. Zhdanov, Nucl. Phys. A 640, 375 (1998)

    Article  ADS  Google Scholar 

  12. N. Bohr, J.A. Wheeler, Phys. Rev. 56, 426 (1939)

    Article  ADS  Google Scholar 

  13. M. Chadwick et al., Nucl. Data Sheets 112, 2887 (2011)

    Article  ADS  Google Scholar 

  14. A.J. Koning, S. Hilaire, S. Goriely, TALYS-1.9: a nuclear reaction program (Nuclear Research and Consultancy Group (NRG) Petten, The Netherlands, 2017) https://doi.org/www.talys.eu

  15. K.-H. Schmidt, B. Jurado, C. Amouroux, C. Schmitt, Nucl. Data Sheets 131, 107 (2016)

    Article  ADS  Google Scholar 

  16. K.-H. Schmidt, B. Jurado, Phys. Proc. 31, 147 (2012)

    Article  ADS  Google Scholar 

  17. B.D. Wilkins, E.P. Steinberg, R.R. Chasman, Phys. Rev. C 14, 1832 (1976)

    Article  ADS  Google Scholar 

  18. M. Wang, G. Audi, A.H. Wapstra, F.G. Kondev, M. MacCormick, X. Xu, B. Pfeiffer, Chin. Phys. C 36, 1603 (2012)

    Article  Google Scholar 

  19. M.G. Itkis, V.N. Okolovich, A.Ya. Rusanov, G.N. Smirenkin, Z. Phys. A 320, 433 (1985)

    Article  ADS  Google Scholar 

  20. K.-H. Schmidt, A. Kelić, M.V. Ricciardi, EPL 83, 32001 (2008)

    Article  ADS  Google Scholar 

  21. T.R. England, B.F. Rider, Evaluation and compilation of fission product yields, LA-UR-94-3106, Los Alamos National Laboratory (1993)

  22. A.V. Ignatyuk, G.N. Smirenkin, A.S. Tishin, Sov. J. Nucl. Phys. 21, 255 (1975)

    Google Scholar 

  23. A.C. Wahl, R.L. Ferguson, D.R. Nethaway, D.E. Troutner, K. Wolfsberg, Phys. Rev. 126, 1112 (1962)

    Article  ADS  Google Scholar 

  24. U. Brosa, S. Grossmann, A. Müller, Phys. Rep. 197, 167 (1990)

    Article  ADS  Google Scholar 

  25. T. von Egidy, D. Bucurescu, Phys. Rev. C 72, 044311 (2005)

    Article  ADS  Google Scholar 

  26. A.S. Iljinov, M.V. Mebel, N. Bianchi, E. De Sanctis, C. Guaraldo, V. Lucherini, V. Muccifora, E. Polli, A.R. Reolon, P. Rossi, Nucl. Phys. A 543, 517 (1992)

    Article  ADS  Google Scholar 

  27. W.D. Myers, W.J. Swiatecki, Nucl. Phys. 81, 1 (1966)

    Article  Google Scholar 

  28. R. Vandenbosch, J.R. Huizenga, Nuclear Fission (Academic Press, New York, 1973)

  29. M. Asghar, P. D’Hondt, C. Guet, P. Perrin, C. Wagemans, Nucl. Phys. A 292, 225 (1977)

    Article  ADS  Google Scholar 

  30. A. Bail, PhD Thesis, University of Bordeaux (2009)

  31. G. Diiorio, B.W. Wehring, Nucl. Instrum. Methods 147, 487 (1977)

    Article  ADS  Google Scholar 

  32. H. Farrar, R.H. Tomlinson, Nucl. Phys. 34, 367 (1962)

    Article  Google Scholar 

  33. C.A. Fontenla, D.P. Fontenla, Phys. Rev. Lett. 44, 1200 (1980)

    Article  ADS  Google Scholar 

  34. H. Thierens, D. de Frenne, E. Jacobs, A. de Clercq, P. D’Hondt, A.J. Deruytter, Nucl. Instum. Methods 134, 299 (1976)

    Article  ADS  Google Scholar 

  35. C. Wagemans, E. Allaert, F. Caitucoli, P. D’Hondt, G. Barreau, P. Perrin, Nucl. Phys. A 369, 1 (1981)

    Article  ADS  Google Scholar 

  36. H. Wohlfarth, PhD Thesis, Technische Hochschule Darmstadt (1977)

  37. P.P. Dyachenko, B.D. Kuzminov, A. Lajtai, The kinetic energy of fragments in the fission of ${}^{235}$U by neutrons with energies from 0 to 0.6 MeV, INDC(CCP)-008 (International Atomic Energy Agency, 1970)

  38. H. Baba, T. Saito, N. Takahashi, A. Yokoyama, T. Miyauchi, S. Mori, D. Yano, T. Hakoda, K. Takamiya, K. Nakanishi, Y. Nakagome, J. Nucl. Sci. Technol. 34, 871 (1997)

    Article  Google Scholar 

  39. U. Quade, K. Rudolph, S. Skorka, P. Armbruster, H.-G. Clerc, W. Lang, M. Mutterer, C. Schmitt, J.P. Theobald, F. Gönnenwein, J. Pannicke, H. Schrader, G. Siegert, D. Engelhardt, Nucl. Phys. A 487, 1 (1988)

    Article  ADS  Google Scholar 

  40. B.W. Wehring, S. Lee, G. Swift, Light fragment independent yields for thermal neutron fission of U-233, UILU-ENG-80-5312, University of Illinois, Urbana (1980)

  41. D.R. Bidinosti, D.E. Irish, R.H. Tomlinson, Can. J. Chem. 39, 628 (1961)

    Article  Google Scholar 

  42. W.J. Maeck, in Conference on Nuclear Cross Sections and Technology, Washington, USA, Vol. 1 (U.S. Department of Commerce, National Bureau of Standards, 1975) p. 378

  43. L. Koch, Radiochim. Acta 29, 61 (1981)

    Article  Google Scholar 

  44. M. Haddad, J. Crançon, G. Lhospice, M. Asghar, Radiochim. Acta 46, 23 (1989)

    Google Scholar 

  45. A.Ya. Rusanov, M.G. Itkis, V.N. Okolovich, Phys. At. Nucl. 60, 683 (1997)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seung-Woo Hong.

Additional information

Communicated by F. Gulminelli

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, J., Gil, CS., Lee, YO. et al. Calculation of fission product yields for uranium isotopes by using a semi-empirical model. Eur. Phys. J. A 54, 173 (2018). https://doi.org/10.1140/epja/i2018-12607-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2018-12607-2

Navigation