Skip to main content
Log in

Beautiful mathematics for beauty-full and other multi-heavy hadronic systems

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract.

In most non-perturbative methods in hadron physics the calculations are started with a correlation function in terms of some interpolating and transition currents in x -space. For simplicity, the calculations are then transformed to the momentum space by a Fourier transformation. To suppress the contributions of the higher states and continuum, and enhance the ground state contribution, the Borel transformation as well as continuum subtraction are applied with the help of quark-hadron duality assumption. In the present study we work out the mathematics required for these processes in the case of light and multi-heavy hadrons. We address a well-known problem in the subtraction of the effects of the higher states and continuum and discuss how we find finite results without any divergence by using an appropriate representation of the modified Bessel functions, appearing in the heavy quark propagator, and successive applications of the Borel transformations, which lead to more suppression of the higher states and continuum contributions. The results obtained can be used in the determination of the spectroscopic and decay properties of the multi-heavy standard and non-conventional (exotic) systems in many non-perturbative methods, especially the QCD sum rules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. T.M. Aliev, K. Azizi, H. Sundu, Eur. Phys. J. C 78, 396 (2018) arXiv:1804.02656 [hep-ph]

    Article  ADS  Google Scholar 

  2. T.M. Aliev, K. Azizi, H. Sundu, On the nature of $\Xi_c(2930)$, arXiv:1803.04002 [hep-ph]

  3. K. Azizi, N. Er, Nucl. Phys. A 970, 422 (2018) arXiv:1801.02168 [hep-ph]

    Article  ADS  Google Scholar 

  4. S.S. Agaev, K. Azizi, H. Sundu, Eur. Phys. J. C 77, 395 (2017) arXiv:1704.04928 [hep-ph]

    Article  ADS  Google Scholar 

  5. SELEX Collaboration (M. Mattson et al.), Phys. Rev. Lett. 89, 112001 (2002) arXiv:hep-ex/0208014

    Article  Google Scholar 

  6. SELEX Collaboration (A. Ocherashvili et al.), Phys. Lett. B 628, 18 (2005) arXiv:hep-ex/0406033

    Article  ADS  Google Scholar 

  7. LHCb Collaboration (R. Aaij et al.), Phys. Rev. Lett. 119, 112001 (2017) arXiv:1707.01621 [hep-ex]

    Article  ADS  Google Scholar 

  8. R.L. Jaffe, Phys. Rev. D 15, 267 (1977)

    Article  ADS  Google Scholar 

  9. R.L. Jaffe, Phys. Rev. D 15, 281 (1977)

    Article  ADS  Google Scholar 

  10. N. Isgur, J.E. Paton, Phys. Rev. D 31, 2910 (1985)

    Article  ADS  Google Scholar 

  11. A. De Rujula, H. Georgi, S.L. Glashow, Phys. Rev. Lett. 38, 317 (1977)

    Article  ADS  Google Scholar 

  12. R.L. Jaffe, Phys. Rep. 409, 1 (2005) arXiv:hep-ph/ 0409065

    Article  ADS  Google Scholar 

  13. R.L. Jaffe, K. Johnson, Phys. Lett. B 60, 201 (1976)

    Article  ADS  Google Scholar 

  14. Belle Collaboration (S.K. Choi et al.), Phys. Rev. Lett. 91, 262001 (2003) arXiv:hep-ex/0309032

    Article  Google Scholar 

  15. LHCb Collaboration (R. Aaij et al.), Phys. Rev. Lett. 115, 072001 (2015) arXiv:1507.03414 [hep-ex]

    Article  ADS  Google Scholar 

  16. K. Azizi, Y. Sarac, H. Sundu, Phys. Lett. B 782, 694 (2018) arXiv:1802.01384 [hep-ph]

    Article  ADS  Google Scholar 

  17. S.S. Agaev, K. Azizi, H. Sundu, Phys. Lett. B 781, 279 (2018) arXiv:1711.11553 [hep-ph]

    Article  ADS  Google Scholar 

  18. S.S. Agaev, K. Azizi, H. Sundu, Phys. Rev. D 93, 114036 (2016) arXiv:1605.02496 [hep-ph]

    Article  ADS  Google Scholar 

  19. T.M. Aliev, A. Ozpineci, M. Savci, V.S. Zamiralov, Phys. Rev. D 80, 016010 (2009) arXiv:0905.4664 [hep-ph]

    Article  ADS  Google Scholar 

  20. T.M. Aliev, K. Azizi, M. Savci, Phys. Rev. D 82, 096006 (2010) arXiv:1007.3389 [hep-ph]

    Article  ADS  Google Scholar 

  21. T.M. Aliev, K. Azizi, M. Savci, Phys. Lett. B 696, 220 (2011) arXiv:1009.3658 [hep-ph]

    Article  ADS  Google Scholar 

  22. T.M. Aliev, K. Azizi, M. Savci, Nucl. Phys. A 870-871, 58 (2011) arXiv:1102.5460 [hep-ph]

    Article  ADS  Google Scholar 

  23. S.S. Agaev, K. Azizi, H. Sundu, Phys. Rev. D 96, 094011 (2017) arXiv:1708.07348 [hep-ph]

    Article  ADS  Google Scholar 

  24. W. Roberts, M. Pervin, Int. J. Mod. Phys. A 23, 2817 (2008) arXiv:0711.2492 [nucl-th]

    Article  ADS  Google Scholar 

  25. A. Valcarce, H. Garcilazo, J. Vijande, Eur. Phys. J. A 37, 217 (2008) arXiv:0807.2973 [hep-ph]

    Article  ADS  Google Scholar 

  26. S.S. Agaev, K. Azizi, H. Sundu, Phys. Rev. D 93, 074024 (2016) arXiv:1602.08642 [hep-ph]

    Article  ADS  Google Scholar 

  27. Q.F. Lü, Y.B. Dong, Phys. Rev. D 94, 094041 (2016) arXiv:1603.06417 [hep-ph]

    Article  ADS  Google Scholar 

  28. Z.G. Wang, Eur. Phys. J. C 68, 479 (2010) arXiv:1001.1652 [hep-ph]

    Article  ADS  Google Scholar 

  29. Z.G. Wang, Phys. Lett. B 685, 59 (2010) arXiv:0912.1648 [hep-ph]

    Article  ADS  Google Scholar 

  30. S.S. Agaev, K. Azizi, H. Sundu, EPL 118, 61001 (2017) arXiv:1703.07091 [hep-ph]

    Article  ADS  Google Scholar 

  31. D. Ebert, R.N. Faustov, V.O. Galkin, Phys. Rev. D 84, 014025 (2011) arXiv:1105.0583 [hep-ph]

    Article  ADS  Google Scholar 

  32. T.M. Aliev, K. Azizi, M. Savci, Nucl. Phys. A 895, 59 (2012) arXiv:1205.2873 [hep-ph]

    Article  ADS  Google Scholar 

  33. T.M. Aliev, K. Azizi, M. Savc, Phys. Lett. B 715, 149 (2012) arXiv:1205.6320 [hep-ph]

    Article  ADS  Google Scholar 

  34. T.M. Aliev, K. Azizi, M. Savci, J. Phys. G 40, 065003 (2013) arXiv:1208.1976 [hep-ph]

    Article  ADS  Google Scholar 

  35. T.M. Aliev, K. Azizi, M. Savci, JHEP 04, 042 (2013) arXiv:1212.6065 [hep-ph]

    Article  ADS  Google Scholar 

  36. T.M. Aliev, K. Azizi, M. Savc, J. Phys. G 41, 065003 (2014) arXiv:1404.2091 [hep-ph]

    Article  ADS  Google Scholar 

  37. D. Ebert, R.N. Faustov, V.O. Galkin, A.P. Martynenko, Phys. Rev. D 66, 014008 (2002) arXiv:hep-ph/0201217

    Article  ADS  Google Scholar 

  38. K.W. Wei, B. Chen, X.H. Guo, Phys. Rev. D 92, 076008 (2015) arXiv:1503.05184 [hep-ph]

    Article  ADS  Google Scholar 

  39. Y.J. Shi, W. Wang, Y. Xing, J. Xu, Weak decays of doubly heavy baryons: Multi-body decay channels, arXiv:1712.03830 [hep-ph]

  40. C.Y. Wang, C. Meng, Y.Q. Ma, K.T. Chao, NLO effects for doubly heavy baryon in QCD sum rules, arXiv:1708.04563 [hep-ph]

  41. M.N. Anwar, J. Ferretti, F.K. Guo, E. Santopinto, B.S. Zou, arXiv:1710.02540 [hep-ph]

  42. Altuğ Özpineci, Application of light cone QCD sum rules to hadron physics, PhD Thesis, Graduate School of Natural and Applied Sciences, Middle East Technical University (2001)

  43. M.A. Shifman, A.I. Vainshtein, V.I. Zakharov, Nucl. Phys. B 147, 385 (1979)

    Article  ADS  Google Scholar 

  44. I.I. Balitsky, V.M. Braun, A.V. Kolesnichenko, Nucl. Phys. B 312, 509 (1989)

    Article  ADS  Google Scholar 

  45. I.I. Balitsky, V.M. Braun, Nucl. Phys. B 311, 541 (1989)

    Article  ADS  Google Scholar 

  46. L.J. Reinders, H. Rubinstein, S. Yazaki, Phys. Rep. 127, 1 (1985)

    Article  ADS  Google Scholar 

  47. F.X. Lee, X.y. Liu, Phys. Rev. D 66, 014014 (2002) arXiv:nucl-th/0203051

    Article  ADS  Google Scholar 

  48. U. Ozdem, K. Azizi, Phys. Rev. D 96, 074030 (2017) arXiv:1707.09612 [hep-ph]

    Article  ADS  Google Scholar 

  49. P. Ball, JHEP 01, 010 (1999) arXiv:hep-ph/9812375

    Article  ADS  Google Scholar 

  50. P. Ball, V.M. Braun, A. Lenz, JHEP 05, 004 (2006) arXiv:hep-ph/0603063

    Article  ADS  Google Scholar 

  51. P. Ball, R. Zwicky, Phys. Rev. D 71, 014015 (2005) arXiv:hep-ph/0406232

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Azizi.

Additional information

Communicated by Xin-Nian Wang

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Azizi, K., Olamaei, A.R. & Rostami, S. Beautiful mathematics for beauty-full and other multi-heavy hadronic systems. Eur. Phys. J. A 54, 162 (2018). https://doi.org/10.1140/epja/i2018-12595-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2018-12595-1

Navigation