Skip to main content
Log in

Phase-Imaging Ion-Cyclotron-Resonance technique at the JYFLTRAP double Penning trap mass spectrometer

  • Special Article - New Tools and Techniques
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract.

The Phase-Imaging Ion-Cyclotron-Resonance (PI-ICR) technique has been commissioned at the JYFLTRAP double Penning trap mass spectrometer. This technique is based on projecting the ion motion in the Penning trap onto a position-sensitive multichannel-plate ion detector. Mass measurements of stable 85 Rb \( ^{+}\) and 87 Rb \( ^{+}\) ions with well-known mass values show that relative uncertainties \( \Delta m/m \leq 7\cdot 10^{-10}\) are possible to reach with the PI-ICR technique at JYFLTRAP. The significant improvement both in resolving power and in precision compared to the conventional Time-of-Flight Ion Cyclotron Resonance technique will enable measurements of close-lying isomeric states and of more exotic isotopes as well as ultra-high precision measurements required, e.g., for neutrino physics. In addition, a new phase-dependent cleaning method based on the differences in the accumulated cyclotron motion phases has been demonstrated with short-lived 127 In \( ^{+}\) and 127m In \( ^{+}\) ions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Blaum, J. Dilling, W. Nörtershäuser, Phys. Scr. T152, 014017 (2013)

    Article  ADS  Google Scholar 

  2. T. Eronen, A. Kankainen, J. Äystö, Prog. Part. Nucl. Phys. 91, 259 (2016)

    Article  ADS  Google Scholar 

  3. T. Eronen, J.C. Hardy, Eur. Phys. J. A 48, 48 (2012)

    Article  ADS  Google Scholar 

  4. S. Eliseev, T. Eronen, Y.N. Novikov, Int. J. Mass Spectrom. 349-350, 102 (2013)

    Article  Google Scholar 

  5. G. Gräff, H. Kalinowsky, J. Traut, Z. Phys. A 297, 35 (1980)

    Article  ADS  Google Scholar 

  6. M. König, G. Bollen, H.J. Kluge, T. Otto, J. Szerypo, Int. J. Mass Spectrom. Ion Process. 142, 95 (1995)

    Article  ADS  Google Scholar 

  7. S. George et al., Phys. Rev. Lett. 98, 162501 (2007)

    Article  ADS  Google Scholar 

  8. S. George, K. Blaum, F. Herfurth, A. Herlert, M. Kretzschmar, S. Nagy, S. Schwarz, L. Schweikhard, C. Yazidjian, Int. J. Mass Spectrom. 264, 110 (2007)

    Article  Google Scholar 

  9. M. Kretzschmar, Int. J. Mass Spectrom. 264, 122 (2007)

    Article  Google Scholar 

  10. M. Goncharov, K. Blaum, M. Block, C. Droese, S. Eliseev, F. Herfurth, E. Minaya Ramirez, Y.N. Novikov, L. Schweikhard, K. Zuber, Phys. Rev. C 84, 028501 (2011)

    Article  ADS  Google Scholar 

  11. D.A. Nesterenko et al., J. Phys. G: Nucl. Part. Phys. 44, 065103 (2017)

    Article  ADS  Google Scholar 

  12. J. Hakala et al., Eur. Phys. J. A 47, 129 (2011)

    Article  ADS  Google Scholar 

  13. S. Eliseev, K. Blaum, M. Block, C. Droese, M. Goncharov, E. Minaya Ramirez, D.A. Nesterenko, Y.N. Novikov, L. Schweikhard, Phys. Rev. Lett. 110, 082501 (2013)

    Article  ADS  Google Scholar 

  14. S. Eliseev et al., Appl. Phys. B 114, 107 (2014)

    Article  ADS  Google Scholar 

  15. D.A. Nesterenko et al., Phys. Rev. C 90, 042501 (2014)

    Article  ADS  Google Scholar 

  16. S. Eliseev et al., Phys. Rev. Lett. 115, 062501 (2015)

    Article  ADS  Google Scholar 

  17. F. Köhler et al., Nat. Commun. 7, 10246 (2016)

    Article  ADS  Google Scholar 

  18. T. Eronen et al., Eur. Phys. J. A 48, 46 (2012)

    Article  ADS  Google Scholar 

  19. M. Wang, G. Audi, F. Kondev, W. Huang, S. Naimi, X. Xu, Chin. Phys. C 41, 030003 (2017)

    Article  ADS  Google Scholar 

  20. G. Bollen, H.-J. Kluge, M. König, T. Otto, G. Savard, H. Stolzenberg, R.B. Moore, G. Rouleau, G. Audi, I. Collaboration, Phys. Rev. C 46, R2140 (1992)

    Article  ADS  Google Scholar 

  21. G. Savard, S. Becker, G. Bollen, H.J. Kluge, R.B. Moore, T. Otto, L. Schweikhard, H. Stolzenberg, U. Wiess, Phys. Lett. A 158, 247 (1991)

    Article  ADS  Google Scholar 

  22. M. Rosenbusch, K. Blaum, C. Borgmann, S. Kreim, M. Kretzschmar, D. Lunney, L. Schweikhard, F. Wienholtz, R. Wolf, Int. J. Mass Spectrom. 325-327, 51 (2012)

    Article  Google Scholar 

  23. R. Wolf et al., Int. J. Mass Spectrom. 349-350, 123 (2013)

    Article  Google Scholar 

  24. R. Ringle, G. Bollen, P. Schury, S. Schwarz, T. Sun, Int. J. Mass Spectrom. 262, 33 (2007)

    Article  Google Scholar 

  25. S. Eliseev, M. Block, A. Chaudhuri, F. Herfurth, H.-J. Kluge, A. Martin, C. Rauth, G. Vorobjev, Int. J. Mass Spectrom. 262, 45 (2007)

    Article  Google Scholar 

  26. A.T. Gallant et al., Phys. Rev. C 85, 044311 (2012)

    Article  ADS  Google Scholar 

  27. T. Eronen, V.-V. Elomaa, U. Hager, J. Hakala, A. Jokinen, A. Kankainen, S. Rahaman, J. Rissanen, C. Weber, J. Äystö, Nucl. Instrum. Methods Phys. Res. B 266, 4527 (2008)

    Article  ADS  Google Scholar 

  28. L.S. Brown, G. Gabrielse, Rev. Mod. Phys. 58, 233 (1986)

    Article  ADS  Google Scholar 

  29. G. Gabrielse, L. Haarsma, S. Rolston, Int. J. Mass Spectrom. Ion Process. 88, 319 (1989)

    Article  ADS  Google Scholar 

  30. G. Gabrielse, Int. J. Mass Spectrom. 279, 107 (2009)

    Article  Google Scholar 

  31. M. Kretzschmar, Int. J. Mass Spectrom. 309, 30 (2012)

    Article  Google Scholar 

  32. K. Blaum, Phys. Rep. 425, 1 (2006)

    Article  ADS  Google Scholar 

  33. G. Bollen, S. Becker, H.-J. Kluge, M. Knig, R. Moore, T. Otto, H. Raimbault-Hartmann, G. Savard, L. Schweikhard, H. Stolzenberg, Nucl. Instrum. Methods Phys. Res. A 368, 675 (1996)

    Article  ADS  Google Scholar 

  34. M. Block et al., Eur. Phys. J. D 45, 39 (2007)

    Article  ADS  Google Scholar 

  35. P. Dupré, D. Lunney, Int. J. Mass Spectrom. 379, 33 (2015)

    Article  Google Scholar 

  36. I. Moore et al., Nucl. Instrum. Methods Phys. Res. B 317, 208 (2013)

    Article  ADS  Google Scholar 

  37. P. Karvonen, I. Moore, T. Sonoda, T. Kessler, H. Penttilä, K. Peräjärvi, P. Ronkanen, J. Äystö, Nucl. Instrum. Methods Phys. Res. B 266, 4794 (2008)

    Article  ADS  Google Scholar 

  38. A. Nieminen, J. Huikari, A. Jokinen, J. Äystö, P. Campbell, E. Cochrane, Nucl. Instrum. Methods Phys. Res. A 469, 244 (2001)

    Article  ADS  Google Scholar 

  39. F. Herfurth et al., Nucl. Instrum. Methods Phys. Res. A 469, 254 (2001)

    Article  ADS  Google Scholar 

  40. T. Brunner et al., Nucl. Instrum. Methods Phys. Res. A 676, 32 (2012)

    Article  ADS  Google Scholar 

  41. MCP delay line detector, RoentDek Handels GmbH, https://doi.org/www.roentdek.de

  42. SIMION, Scientific Instrument Services, Inc. (SIS), https://doi.org/simion.com

  43. J. Ketter, T. Eronen, M. Höcker, S. Streubel, K. Blaum, Int. J. Mass Spectrom. 358, 1 (2014)

    Article  Google Scholar 

  44. COMSOL, Inc., https://doi.org/www.comsol.com

  45. A. Kellerbauer, K. Blaum, G. Bollen, F. Herfurth, H.-J. Kluge, M. Kuckein, E. Sauvan, C. Scheidenberger, L. Schweikhard, Eur. Phys. J. D 22, 53 (2003)

    Article  ADS  Google Scholar 

  46. R.T. Birge, Phys. Rev. 40, 207 (1932)

    Article  ADS  Google Scholar 

  47. G. Audi, F. Kondev, M. Wang, W. Huang, S. Naimi, Chin. Phys. C 41, 030001 (2017)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. A. Nesterenko.

Additional information

Communicated by K. Blaum

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nesterenko, D.A., Eronen, T., Kankainen, A. et al. Phase-Imaging Ion-Cyclotron-Resonance technique at the JYFLTRAP double Penning trap mass spectrometer. Eur. Phys. J. A 54, 154 (2018). https://doi.org/10.1140/epja/i2018-12589-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2018-12589-y

Navigation