Skip to main content

Advertisement

Log in

Fission fragment yields from heavy-ion-induced reactions measured with a fragment separator

  • Regular Article - Experimental Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract.

The systematic study of fission fragment yields under different initial conditions has provided valuable experimental data for benchmarking models of fission product yields. Nuclear reactions using inverse kinematics coupled to the use of a high-resolution spectrometer with good fragment identification are shown here to be a powerful tool to measure the inclusive isotopic yields of fission fragments. In-flight fusion-fission was used in this work to produce secondary beams of neutron-rich isotopes in the collisions of a 238U beam at 24 MeV/u with 9Be and 12C targets at GANIL using the LISE3 fragment separator. Unique identification of the A, Z, and atomic charge state, q, of fission products was attained with the \(\Delta E\)-TKE-B\(\rho\)-ToF measurement technique. Mass, and atomic number distributions are reported for the two reactions. The results show the importance of different reaction mechanisms in the two cases. The optimal target material for higher yields of neutron-rich high-Z isotopes produced in fusion-fission reactions as a function of projectile energy is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. M. Bernas et al., Phys. Lett. B 415, 111 (1997)

    Article  ADS  Google Scholar 

  2. M. Hesse et al., Z. Phys. A 355, 69 (1996)

    Article  ADS  Google Scholar 

  3. O.B. Tarasov, D. Bazin, Nucl. Instrum. Methods Phys. Res. B 266, 4657 (2008) http://lise.nscl.msu.edu/

    Article  ADS  Google Scholar 

  4. M. Caamaño et al., Phys. Rev. C 88, 024605 (2013)

    Article  ADS  Google Scholar 

  5. A. Shrivastava et al., Phys. Rev. C 80, 051305(R) (2009)

    Article  ADS  Google Scholar 

  6. F. Farget et al., Eur. Phys. J. A 51, 175 (2015)

    Article  ADS  Google Scholar 

  7. C. Rodriguez-Tajes et al., Phys. Rev. C 89, 024614 (2014)

    Article  ADS  Google Scholar 

  8. O.B. Tarasov, A.C.C. Villari, Nucl. Instrum. Methods Phys. Res. B 266, 4670 (2008)

    Article  ADS  Google Scholar 

  9. R. Anne et al., Nucl. Instrum. Methods A 257, 215 (1987)

    Article  ADS  Google Scholar 

  10. M.G. Itkis et al., Nucl. Phys. A 944, 201 (2015)

    Article  ADS  Google Scholar 

  11. M.G. Itkis et al., Int. J. Mod. Phys. E 16, 957 (2007)

    Article  ADS  Google Scholar 

  12. R.G. Thomas et al., Phys. Rev. C 77, 034610 (2008)

    Article  ADS  Google Scholar 

  13. J. Khuyaagbaatar et al., Phys. Rev. C 91, 054608 (2015)

    Article  ADS  Google Scholar 

  14. V.I. Zagrebaev, W. Greiner, Phys. Rev. C 78, 034610 (2008)

    Article  ADS  Google Scholar 

  15. V.I. Zagrebaev, Nucl. Phys. A 734, 164 (2004)

    Article  ADS  Google Scholar 

  16. J.P. Block et al., Nucl. Phys. A 459, 145 (1986)

    Article  ADS  Google Scholar 

  17. W.J. Swiatecki, Phys. Scr. 24, 113 (1981)

    Article  ADS  Google Scholar 

  18. S. Bjornholm, W. Swiatecki, Nucl. Phys. A 391, 471 (1982)

    Article  ADS  Google Scholar 

  19. O.B. Tarasov et al., Phys. Rev. C 80, 034609 (2009)

    Article  ADS  Google Scholar 

  20. O.H. Odland et al., Nucl. Instrum. Methods Phys. Res. A 378, 149 (1996)

    Article  ADS  Google Scholar 

  21. R. Bass, Nucl. Phys. A 231, 45 (1974)

    Article  ADS  Google Scholar 

  22. J.R. Birkelund et al., Phys. Rev. C 13, 133 (1976)

    Article  ADS  Google Scholar 

  23. O.B. Tarasov, private communication, Update of fusion reaction mechanism in LISE$^{++}$, available on-line at http://lise.nscl.msu.edu/9_10/9_10_Fusion.pdf

  24. A.J. Sierk, Phys. Rev. C 33, 2039 (1986)

    Article  ADS  Google Scholar 

  25. D.J. Morrissey et al., Nucl. Phys. A 442, 578 (1985)

    Article  ADS  Google Scholar 

  26. A. Leon et al., At. Data Nucl. Data Tables 69, 217 (1998)

    Article  ADS  Google Scholar 

  27. G. Schiwietz, P.L. Grande, Nucl. Instrum. Methods Phys. Res. B 175, 125 (2001)

    Article  ADS  Google Scholar 

  28. J.A. Winger, B. Sherrill, D.J. Morrissey, Nucl. Instrum. Methods Phys. Res. B 70, 380 (1992)

    Article  ADS  Google Scholar 

  29. O.B. Tarasov, Abrasion-Fission, NSCL preprint MSUCL1316 (2005) https://groups.nscl.msu.edu/nscl_library/nscl_preprint/MSUCL1300.pdf

  30. J. Pereira et al., Phys. Rev. C 75, 044604 (2007)

    Article  ADS  Google Scholar 

  31. M. Bernas et al., Nucl. Phys. A 725, 213 (2003)

    Article  ADS  Google Scholar 

  32. K.-H. Schmidt, J. Benlliure, A.R. Junghans, Nucl. Phys. A 693, 169 (2001)

    Article  ADS  Google Scholar 

  33. M. Lefort, Nucl. Phys. A 387, 3 (1982)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. B. Tarasov.

Additional information

Communicated by P. Woods

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tarasov, O.B., Delaune, O., Farget, F. et al. Fission fragment yields from heavy-ion-induced reactions measured with a fragment separator. Eur. Phys. J. A 54, 66 (2018). https://doi.org/10.1140/epja/i2018-12500-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2018-12500-0

Navigation