Skip to main content
Log in

Modeling baryonic interactions with the Clausius-type equation of state

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract.

The quantum-statistical Clausius-based equation of state is used to describe a system of interacting nucleons. The interaction parameters a, b, and c of the model are fixed by the empirically known nuclear ground-state properties and nuclear incompressibility modulus. The model is generalized to describe the baryon-baryon interactions in the hadron resonance gas (HRG). The predictions of such a Clausius-HRG model are confronted with the lattice QCD data at zero and at small chemical potentials, and are also contrasted with the standard van der Waals approach. It is found that the behavior of the lattice QCD observables in a high-temperature hadron gas is sensitive to the nuclear matter properties. An improved description of the nuclear incompressibility factor correlates with an improved description of the lattice QCD data in the crossover transition region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. L.D. Landau, E.M. Lifshitz, Statistical Physics (Pergamon, Oxford, 1975)

  2. W. Greiner, L. Neise, H. Stöcker, Thermodynamics and Statistical Mechanics (Springer-Verlag New York, Inc, 1995)

  3. V. Vovchenko, D.V. Anchishkin, M.I. Gorenstein, J. Phys. A 48, 305001 (2015)

    Article  MathSciNet  Google Scholar 

  4. V. Vovchenko, D.V. Anchishkin, M.I. Gorenstein, Phys. Rev. C 91, 064314 (2015)

    Article  ADS  Google Scholar 

  5. K. Redlich, K. Zalewski, Acta Phys. Polon. B 47, 1943 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  6. V. Vovchenko, M.I. Gorenstein, H. Stoecker, Phys. Rev. Lett. 118, 182301 (2017)

    Article  ADS  Google Scholar 

  7. V. Vovchenko, Phys. Rev. C 96, 015206 (2017) arXiv:1701.06524 [nucl-th]

    Article  ADS  Google Scholar 

  8. S. Typel, Eur. Phys. J. A 52, 16 (2016)

    Article  ADS  Google Scholar 

  9. V. Vovchenko, A. Motornenko, M.I. Gorenstein, H. Stoecker, arXiv:1710.00693 [nucl-th]

  10. J.D. Walecka, Ann. Phys. 83, 491 (1974)

    Article  ADS  Google Scholar 

  11. B.D. Serot, J.D. Walecka, Adv. Nucl. Phys. 16, 1 (1986)

    Google Scholar 

  12. M. Dutra, O. Lourenco, J.S. Sa Martins, A. Delfino, J.R. Stone, P.D. Stevenson, Phys. Rev. C 85, 035201 (2012)

    Article  ADS  Google Scholar 

  13. M. Dutra et al., Phys. Rev. C 90, 055203 (2014)

    Article  ADS  Google Scholar 

  14. B.A. Li, L.W. Chen, C.M. Ko, Phys. Rep. 464, 113 (2008)

    Article  ADS  Google Scholar 

  15. B.K. Jennings, S. Das Gupta, N. Mobed, Phys. Rev. C 25, 278 (1982)

    Article  ADS  Google Scholar 

  16. G. Röpke, L. Münchow, H. Schulz, Nucl. Phys. A 379, 536 (1982)

    Article  ADS  Google Scholar 

  17. G.I. Fai, J. Randrup, Nucl. Phys. A 381, 557 (1982)

    Article  ADS  Google Scholar 

  18. T. Biro, H.W. Barz, B. Lukacs, J. Zimanyi, Phys. Rev. C 27, 2695 (1983)

    Article  ADS  Google Scholar 

  19. H. Stoecker, A.A. Ogloblin, W. Greiner, Z. Phys. A 303, 259 (1981)

    Article  ADS  Google Scholar 

  20. L.P. Csernai, P.R. Subramanian, G. Buchwald, G. Graebner, A. Rosenhauer, J.A. Maruhn, W. Greiner, H. Stoecker, Phys. Rev. C 28, 2001 (1983)

    Article  ADS  Google Scholar 

  21. L.P. Csernai, J.I. Kapusta, Phys. Rep. 131, 223 (1986)

    Article  ADS  Google Scholar 

  22. J. Zimanyi, S.A. Moszkowski, Phys. Rev. C 42, 1416 (1990)

    Article  ADS  Google Scholar 

  23. R. Brockmann, R. Machleidt, Phys. Rev. C 42, 1965 (1990)

    Article  ADS  Google Scholar 

  24. H. Mueller, B.D. Serot, Nucl. Phys. A 606, 508 (1996)

    Article  ADS  Google Scholar 

  25. M. Bender, P.H. Heenen, P.G. Reinhard, Rev. Mod. Phys. 75, 121 (2003)

    Article  ADS  Google Scholar 

  26. D.H. Rischke, M.I. Gorenstein, H. Stoecker, W. Greiner, Z. Phys. C 51, 485 (1991)

    Article  Google Scholar 

  27. D. Anchishkin, E. Suhonen, Nucl. Phys. A 586, 734 (1995)

    Article  ADS  Google Scholar 

  28. L.M. Satarov, M.N. Dmitriev, I.N. Mishustin, Phys. At. Nucl. 72, 1390 (2009)

    Article  Google Scholar 

  29. J.E. Finn et al., Phys. Rev. Lett. 49, 1321 (1982)

    Article  ADS  Google Scholar 

  30. R.W. Minich et al., Phys. Lett. B 118, 458 (1982)

    Article  ADS  Google Scholar 

  31. A.S. Hirsch et al., Phys. Rev. C 29, 508 (1984)

    Article  ADS  Google Scholar 

  32. J. Pochodzalla et al., Phys. Rev. Lett. 75, 1040 (1995)

    Article  ADS  Google Scholar 

  33. J.B. Natowitz, K. Hagel, Y. Ma, M. Murray, L. Qin, R. Wada, J. Wang, Phys. Rev. Lett. 89, 212701 (2002)

    Article  ADS  Google Scholar 

  34. V.A. Karnaukhov et al., Phys. Rev. C 67, 011601 (2003)

    Article  ADS  Google Scholar 

  35. H.A. Bethe, Annu. Rev. Nucl. Part. Sci. 21, 93 (1971)

    Article  ADS  Google Scholar 

  36. J.R. Stone, N.J. Stone, S.A. Moszkowski, Phys. Rev. C 89, 044316 (2014)

    Article  ADS  Google Scholar 

  37. J.B. Elliott, P.T. Lake, L.G. Moretto, L. Phair, Phys. Rev. C 87, 054622 (2013)

    Article  ADS  Google Scholar 

  38. Particle Data Group (K.A. Olive et al.), Chin. Phys. C 38, 090001 (2014)

    Article  Google Scholar 

  39. S. Borsanyi, Z. Fodor, C. Hoelbling, S.D. Katz, S. Krieg, K.K. Szabo, Phys. Lett. B 730, 99 (2014)

    Article  ADS  Google Scholar 

  40. HotQCD Collaboration (A. Bazavov et al.), Phys. Rev. D 90, 094503 (2014)

    ADS  Google Scholar 

  41. R. Bellwied, S. Borsanyi, Z. Fodor, S.D. Katz, C. Ratti, Phys. Rev. Lett. 111, 202302 (2013)

    Article  ADS  Google Scholar 

  42. R. Bellwied, S. Borsanyi, Z. Fodor, S.D. Katz, A. Pasztor, C. Ratti, K.K. Szabo, Phys. Rev. D 92, 114505 (2015)

    Article  ADS  Google Scholar 

  43. A. Bazavov et al., Phys. Rev. D 95, 054504 (2017)

    Article  ADS  Google Scholar 

  44. V. Vovchenko, A. Motornenko, P. Alba, M.I. Gorenstein, L.M. Satarov, H. Stoecker, Phys. Rev. C 96, 045202 (2017)

    Article  ADS  Google Scholar 

  45. P. Huovinen, P. Petreczky, Phys. Lett. B 777, 125 (2018)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark I. Gorenstein.

Additional information

Communicated by T. Biro

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vovchenko, V., Gorenstein, M.I. & Stoecker, H. Modeling baryonic interactions with the Clausius-type equation of state. Eur. Phys. J. A 54, 16 (2018). https://doi.org/10.1140/epja/i2018-12399-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2018-12399-3

Navigation