Skip to main content
Log in

Effective field theory for triaxially deformed nuclei

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract.

Effective field theory is generalized to investigate the rotational motion of triaxially deformed even-even nuclei. The Hamiltonian for the triaxial rotor is obtained up to next-to-leading order within the effective field theory formalism. Its applicability is examined by comparing with a five-dimensional rotor-vibrator Hamiltonian for the description of the energy spectra of the ground state and \( \gamma\) band in Ru isotopes. It is found that by taking into account the next-to-leading order corrections, the ground state band in the whole spin region and the \( \gamma\) band in the low spin region are well described. The deviations for high-spin states in the \( \gamma\) bands point towards the importance of including vibrational degrees of freedom in the effective field theory formulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. A. Bohr, B.R. Mottelson, Nuclear structure, Vol. II (Benjamin, New York, 1975)

  2. F. Iachello, A. Arima, The Interacting Boson Model (Cambridge University Press, Cambridge, 1987)

  3. T. Papenbrock, Nucl. Phys. A 852, 36 (2011)

    Article  ADS  Google Scholar 

  4. J.L. Zhang, T. Papenbrock, Phys. Rev. C 87, 034323 (2013)

    Article  ADS  Google Scholar 

  5. T. Papenbrock, H.A. Weidenmüller, Phys. Rev. C 89, 014334 (2014)

    Article  ADS  Google Scholar 

  6. T. Papenbrock, H.A. Weidenmüller, J. Phys. G: Nucl. Part. Phys. 42, 105103 (2015)

    Article  ADS  Google Scholar 

  7. T. Papenbrock, H.A. Weidenmüller, Phys. Scr. 91, 053004 (2016)

    Article  ADS  Google Scholar 

  8. E.A. Coello Pérez, T. Papenbrock, Phys. Rev. C 92, 014323 (2015)

    Article  ADS  Google Scholar 

  9. E.A. Coello Pérez, T. Papenbrock, Phys. Rev. C 92, 064309 (2015)

    Article  ADS  Google Scholar 

  10. E.A. Coello Pérez, T. Papenbrock, Phys. Rev. C 94, 054316 (2016)

    Article  ADS  Google Scholar 

  11. U. van Kolck, Phys. Rev. C 49, 2932 (1994)

    Article  ADS  Google Scholar 

  12. E. Epelbaum, H.-W. Hammer, U.-G. Meißner, Rev. Mod. Phys. 81, 1773 (2009)

    Article  ADS  Google Scholar 

  13. X.-L. Ren, K.-W. Li, L.-S. Geng, B.-W. Long, P. Ring, J. Meng, arXiv:1611.08475 [nucl-th] (2016)

  14. C. Bertulani, H.-W. Hammer, U. van Kolck, Nucl. Phys. A 712, 37 (2002)

    Article  ADS  Google Scholar 

  15. H.-W. Hammer, D. Phillips, Nucl. Phys. A 865, 17 (2011)

    Article  ADS  Google Scholar 

  16. E. Ryberg, C. Forssén, H.-W. Hammer, L. Platter, Phys. Rev. C 89, 014325 (2014)

    Article  ADS  Google Scholar 

  17. P.F. Bedaque, U. van Kolck, Annu. Rev. Nucl. Part. Sci. 52, 339 (2002)

    Article  ADS  Google Scholar 

  18. H. Grießhammer, J. McGovern, D. Phillips, G. Feldman, Prog. Part. Nucl. Phys. 67, 841 (2012)

    Article  ADS  Google Scholar 

  19. H.-W. Hammer, A. Nogga, A. Schwenk, Rev. Mod. Phys. 85, 197 (2013)

    Article  ADS  Google Scholar 

  20. R. Bengtsson, H. Frisk, F. May, J. Pinston, Nucl. Phys. A 415, 189 (1984)

    Article  ADS  Google Scholar 

  21. I. Hamamoto, H. Sagawa, Phys. Lett. B 201, 415 (1988)

    Article  ADS  Google Scholar 

  22. S. Frauendorf, J. Meng, Nucl. Phys. A 617, 131 (1997)

    Article  ADS  Google Scholar 

  23. J. Meng, J. Peng, S.Q. Zhang, S.-G. Zhou, Phys. Rev. C 73, 037303 (2006)

    Article  ADS  Google Scholar 

  24. S. Coleman, J. Wess, B. Zumino, Phys. Rev. 177, 2239 (1969)

    Article  ADS  Google Scholar 

  25. C.G. Callan, S. Coleman, J. Wess, B. Zumino, Phys. Rev. 177, 2247 (1969)

    Article  ADS  Google Scholar 

  26. T. Brauner, Symmetry 2, 609 (2010)

    Article  MathSciNet  Google Scholar 

  27. P. Ring, P. Schuck, The Nuclear Many Body Problem (Springer Verlag, Berlin, 1980)

  28. A.S. Davydov, G.F. Filippov, Nucl. Phys. 8, 237 (1958)

    Article  Google Scholar 

  29. T. Niksić, D. Vretenar, P. Ring, Prog. Part. Nucl. Phys. 66, 519 (2011)

    Article  ADS  Google Scholar 

  30. P.W. Zhao, Z.P. Li, J.M. Yao, J. Meng, Phys. Rev. C 82, 054319 (2010)

    Article  ADS  Google Scholar 

  31. Z.P. Li, T. Nikšć, P. Ring, D. Vretenar, J.M. Yao, J. Meng, Phys. Rev. C 86, 034334 (2012)

    Article  ADS  Google Scholar 

  32. R. Bengtsson, S. Frauendorf, Nucl. Phys. A 327, 139 (1979)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Q. B. Chen.

Additional information

Communicated by D. Blaschke

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Q.B., Kaiser, N., Meißner, UG. et al. Effective field theory for triaxially deformed nuclei. Eur. Phys. J. A 53, 204 (2017). https://doi.org/10.1140/epja/i2017-12404-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2017-12404-5

Navigation