Skip to main content
Log in

Decay properties of charm and bottom mesons in a quantum isotonic nonlinear oscillator potential model

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract.

Employing generalized quantum isotonic oscillator potential we determine wave function for mesonic system in nonrelativistic formalism. Then we investigate branching ratios of leptonic decays for heavy-light mesons including a charm quark. Next, by applying the Isgur-Wise function we obtain branching ratios of semileptonic decays for mesons including a bottom quark. The weak decay of the \( B_{c}\) meson is also analyzed to study the life time. Comparison with other available theoretical approaches is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. E. Eichten, K. Gottfried, T. Kinoshita, K.D. Lane, T.M. Yan, Phys. Rev. D 17, 3090 (1978)

    Article  ADS  Google Scholar 

  2. D. Ebert, R.N. Faustov, V.O. Galkin, Eur. Phys. J. C 32, 29 (2003)

    Article  ADS  Google Scholar 

  3. C. Quigg, J.L. Rosner, Phys. Lett. B 71, 153 (1977)

    Article  ADS  Google Scholar 

  4. A. Martin, Phys. Lett. B 93, 338 (1980)

    Article  ADS  Google Scholar 

  5. R. Kumar, F. Chand, Commun. Theor. Phys. 59, 528 (2013)

    Article  Google Scholar 

  6. L.S. Geng, M. Altenbuchinger, W. Weise, Phys. Lett. B 696, 390 (2011)

    Article  ADS  Google Scholar 

  7. K.K. Pathak, D.K. Choudhury, Pramana J. Phys. 79, 1385 (2012)

    Article  ADS  Google Scholar 

  8. J.O. Eeg, K. Kumerički, Phys. Rev. D 81, 074015 (2010)

    Article  ADS  Google Scholar 

  9. Z. Ligeti, Y. Nir, M. Neubert, Phys. Rev. D 49, 1302 (1994)

    Article  ADS  Google Scholar 

  10. M.Q. Huang, Y.B. Dai, Phys. Rev. D 64, 014034 (2001)

    Article  ADS  Google Scholar 

  11. S.P. Booth et al., Phys. Rev. Lett. 72, 462 (1994)

    Article  ADS  Google Scholar 

  12. M. Sadzikowski, K. Zalewski, Z Phys. C 59, 677 (1993)

    Article  ADS  Google Scholar 

  13. N. Saad, R.L. Hall, H. Ciftci, O. Yesiltas, Adv. Math. Phys. 2011, 750168 (2011)

    Article  Google Scholar 

  14. A.K. Rai, B. Patel, P.C. Vinodkumar, Phys. Rev. C 78, 055202 (2008)

    Article  ADS  Google Scholar 

  15. B. Patel, P.C. Vinodkumar, Chin. Phys. C 34, 1497 (2010)

    Article  ADS  Google Scholar 

  16. S. Roy, N.S. Bordoloi, D.K. Choudhury, Can. J. Phys. 91, 34 (2013)

    Article  ADS  Google Scholar 

  17. I.J.R. Aitchison, J.J. Dudek, Eur. J. Phys. 23, 605 (2002)

    Article  Google Scholar 

  18. V.V. Kiselev, A.E. Kovalsky, A.K. Likhoded, Phys. At. Nucl. 64, 1860 (2001)

    Article  Google Scholar 

  19. D. Ebert, R.N. Faustov, V.O. Galkin, Phys. Lett. B 635, 93 (2006)

    Article  ADS  Google Scholar 

  20. K.B. Bhaghyesh, V. Kumar, A.P. Monteiro, J. Phys. G: Nucl. Part. Phys. 38, 085001 (2011)

    Article  ADS  Google Scholar 

  21. UKQCD Collaboration (K.C. Bowler et al.), Phys. Rev. D 52, 5067 (1995)

    Article  Google Scholar 

  22. K.K. Pathak, D.K. Choudhury, J. Mod. Phys. 3, 821 (2012)

    Article  Google Scholar 

  23. H.K. Quang, X.Y. Pham, Elementary Particles and Their Interaction (Springer, 1998)

  24. C. Aubin et al., Phys. Rev. Lett. 95, 122002 (2005)

    Article  ADS  Google Scholar 

  25. M.Z. Yang, Eur. Phys. J. C 72, 1880 (2012)

    Article  ADS  Google Scholar 

  26. Z.G. Wang, W.M. Yang, S.L. Wan, Nucl. Phys. A 744, 156 (2004)

    Article  ADS  Google Scholar 

  27. CLEO Collaboration (M. Artuso et al.), Phys. Rev. Lett. 95, 251801 (2005)

    Article  Google Scholar 

  28. Heavy Flavor Averaging Group (D. Asner) arXiv:1010.1589

  29. B.J. Hazarika, D.K. Choudhury, Braz. J. Phys. 41, 159 (2011)

    Article  ADS  Google Scholar 

  30. Particle Data Group (K.A. Olive et al.), Chin. Phys. C 38, 090001 (2014)

    Article  Google Scholar 

  31. E. Jenkins, M. Luke, A.V. Manohar, M. Savage, Nucl. Phys. B 390, 463 (1993)

    Article  ADS  Google Scholar 

  32. M. Atoui, D. Becirevic, V. Morenas, F. Sanfilippo, Eur. Phys. J. C 74, 2861 (2014)

    Article  ADS  Google Scholar 

  33. R.N. Faustov, V.O. Galkin, Phys. Rev. D 87, 034033 (2013)

    Article  ADS  Google Scholar 

  34. D. Ebert, R.N. Faustov, V.O. Galkin, Phys. Rev. D 68, 094020 (2003)

    Article  ADS  Google Scholar 

  35. A.A. El-Hady, M.A.K. Lodhi, J.P. Vary, Phys. Rev. D 59, 094001 (1999)

    Article  ADS  Google Scholar 

  36. C.H. Chang, C.D. Lü, G.L. Wang, H.S. Zong, Phys. Rev. D 60, 114013 (1999)

    Article  ADS  Google Scholar 

  37. S. Faller, A. Khodjamirian, Ch. Klein, Th. Mannel, Eur. Phys. J. C 60, 603 (2009)

    Article  ADS  Google Scholar 

  38. CLEO Collaboration (J. Bartlet et al.), Phys. Rev. Lett. 82, 3746 (1999)

    Article  Google Scholar 

  39. BELLE Collaboration (K. Abe et al.), Phys. Lett. B 526, 258 (2002)

    Article  ADS  Google Scholar 

  40. H.M. Choi, C.R. Ji, Phys. Rev. D 80, 114003 (2009)

    Article  ADS  Google Scholar 

  41. A.Yu. Anisimov, I.M. Narodetskii, C. Semay, B. Silvestre-Brac, Phys. Lett. B 452, 129 (1999)

    Article  ADS  Google Scholar 

  42. M.A. Nobes, R.M. Woloshyn, J. Phys. G: Nucl. Part. Phys. 26, 1079 (2000)

    Article  ADS  Google Scholar 

  43. E. Bagan, H.G. Dosch, P. Gosdzinsky, S. Narison, J.M. Richard, Z. Phys. C 64, 57 (1994)

    Article  ADS  Google Scholar 

  44. C.T.H. Davies, C. McNeile, E. Follana, G.P. Lepage, H. Na, J. Shigemitsu, Phys. Rev. D 82, 114504 (2010)

    Article  ADS  Google Scholar 

  45. P. Blasi, P. Colangelo, G. Nardulli, N. Paver, Phys. Rev. D 49, 238 (1994)

    Article  ADS  Google Scholar 

  46. R.H. Li, C.D. Lu, Y.M. Wang, Phys. Rev. D 80, 014005 (2009)

    Article  ADS  Google Scholar 

  47. X.J. Chen, H.F. Fu, C.S. Kim, G.L. Wang, J. Phys. G 39, 045002 (2012)

    Article  ADS  Google Scholar 

  48. M.A. Ivanov, J.G. Körner, V.E. Lyubovitskij, A.G. Rusetsky, Phys. Rev. D 59, 074016 (1999)

    Article  ADS  Google Scholar 

  49. F. Palombo, arXiv:1104.1420 [hep-ex]

  50. Particle Data Group (K. Nakamura et al.), J. Phys. G 37, 075021 (2010)

    Article  ADS  Google Scholar 

  51. S. Eidelman et al., Phys. Lett. B 592, 1 (2004)

    Article  ADS  Google Scholar 

  52. V.V. Kiselev, A.E. Kovalsky, A.K. Likhoded, Nucl. Phys. B 585, 353 (2000)

    Article  ADS  Google Scholar 

  53. UKQCD Collaboration (L. Lellouch, C.J. Lin), Phys. Rev. D 64, 094501 (2001)

    Google Scholar 

  54. C.W. Hwang, Phys. Rev. D 81, 114024 (2010)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Rahmani.

Additional information

Communicated by G. Torrieri

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahmani, S., Hassanabadi, H. Decay properties of charm and bottom mesons in a quantum isotonic nonlinear oscillator potential model. Eur. Phys. J. A 53, 187 (2017). https://doi.org/10.1140/epja/i2017-12374-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2017-12374-6

Navigation