Skip to main content
Log in

In-medium and isospin effects on eta production in heavy-ion collisions near threshold energies

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract.

The dynamics of \( \eta\) meson produced in heavy-ion collisions has been investigated within the Lanzhou quantum molecular dynamics model (LQMD). The in-medium corrections have been considered in the model, in which an attractive \( \eta\) -nucleon potential is implemented. The impacts of the \( \eta\) optical potential and the nuclear symmetry energy on the \( \eta\) dynamics are investigated. It is found that the total yields are slightly influenced by the potential and weakly depend on the symmetry energy. However, the structure of the kinetic spectra is related to the optical potential and the stiffness of symmetry energy. The attractive potential leads to the reduction of high-momentum (kinetic energy) \( \eta\) production, i.e., the spectra of momentum and transverse mass distributions, increasing the reabsorption process by surrounding nucleons, and favoring the in-plane eta emissions. The reabsorption process in \( \eta\) -nucleon collisions plays a significant role on the \( \eta\) dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B.E. Gibson, E.V. Hungerford III, Phys. Rep. 257, 349 (1995)

    Article  ADS  Google Scholar 

  2. E. Friedman, A. Gal, Phys. Rep. 452, 89 (2007)

    Article  ADS  Google Scholar 

  3. A.W. Steiner, M. Prakash, J.M. Lattimer, P.J. Ellis, Phys. Rep. 411, 325 (2005)

    Article  ADS  Google Scholar 

  4. B.A. Li, Phys. Rev. Lett. 88, 192701 (2002)

    Article  ADS  Google Scholar 

  5. B.A. Li, L.W. Chen, C.M. Ko, Phys. Rep. 464, 113 (2008)

    Article  ADS  Google Scholar 

  6. Q. Li, Z. Li, E. Zhao, R.K. Gupta, Phys. Rev. C 71, 054907 (2005)

    Article  ADS  Google Scholar 

  7. G. Ferini, T. Gaitanos, M. Colonna, M. Di Toro, H.H. Wolter, Phys. Rev. Lett. 97, 202301 (2006)

    Article  ADS  Google Scholar 

  8. M. Di Toro, V. Baran, M. Colonna, V. Greco, J. Phys. G: Nucl. Part. Phys. 37, 083101 (2010)

    Article  ADS  Google Scholar 

  9. V. Prassa, T. Gaitanos, G. Ferini et al., Nucl. Phys. A 832, 88 (2010)

    Article  ADS  Google Scholar 

  10. Z.Q. Feng, G.M. Jin, Phys. Rev. C 82, 044615 (2010)

    Article  ADS  Google Scholar 

  11. Z.Q. Feng, Phys. Rev. C 87, 064605 (2013)

    Article  ADS  Google Scholar 

  12. H.C. Chiang, E. Oset, L.C. Liu, Phys. Rev. C 44, 738 (1991)

    Article  ADS  Google Scholar 

  13. K. Tsushima, D.H. Lu, A.W. Thomas, K. Saito, Phys. Lett. B 443, 26 (1998)

    Article  ADS  Google Scholar 

  14. T. Wass, W. Weise, Nucl. Phys. A 625, 287 (1997)

    Article  ADS  Google Scholar 

  15. X.H. Zhong et al., Phys. Rev. C 73, 015205 (2006)

    Article  ADS  Google Scholar 

  16. P.Z. Ning, Strangeness Nuclear Physics (in chinese) (Science Press, Beijing, 2008)

  17. T. Inoue, E. Oset, Nucl. Phys. A 710, 354 (2002)

    Article  ADS  Google Scholar 

  18. J.C. Peng et al., Phys. Rev. Lett. 58, 2027 (1987)

    Article  ADS  Google Scholar 

  19. F.-D. Berg et al., Phys. Rev. Lett. 72, 977 (1994)

    Article  ADS  Google Scholar 

  20. E. Chiavassa et al., Europhys. Lett. 41, 365 (1998)

    Article  ADS  Google Scholar 

  21. G. Martinez et al., Phys. Rev. Lett. 83, 1538 (1999)

    Article  ADS  Google Scholar 

  22. R. Averbeck et al., Phys. Rev. C 67, 024903 (2003)

    Article  ADS  Google Scholar 

  23. G. Agakishiev et al., Phys. Rev. C 88, 024904 (2013)

    Article  ADS  Google Scholar 

  24. C.M. Ko, G.Q. Li, J. Phys. G 22, 1673 (1996)

    Article  ADS  Google Scholar 

  25. W. Cassing, E.L. Bratkovskaya, Phys. Rep. 308, 65 (1999)

    Article  ADS  Google Scholar 

  26. Z.Q. Feng, Phys. Rev. C 84, 024610 (2011)

    Article  ADS  Google Scholar 

  27. Z.Q. Feng, Phys. Rev. C 85, 014604 (2012)

    Article  ADS  Google Scholar 

  28. Z.Q. Feng, Nucl. Phys. A 878, 3 (2012)

    Article  ADS  Google Scholar 

  29. Z.Q. Feng, W.J. Xie, P.H. Chen, J. Chen, G.M. Jin, Phys. Rev. C 92, 044604 (2015)

    Article  ADS  Google Scholar 

  30. J. Chen, Z.Q. Feng, J.S. Wang, Nucl. Sci. Technol. 27, 73 (2016)

    Article  Google Scholar 

  31. Gy. Wolf, W. Cassing, U. Mosel, Nucl. Phys. A 552, 549 (1993)

    Article  ADS  Google Scholar 

  32. G.C. Yong, B.A. Li, Phys. Lett. B 723, 388 (2013)

    Article  ADS  Google Scholar 

  33. TAPS Collaboration (R. Averbeck et al.), Z. Phys. A 359, 65 (1997)

    Article  Google Scholar 

  34. Z.Q. Feng, Nucl. Phys. A 919, 32 (2013)

    Article  ADS  Google Scholar 

  35. J.Y. Ollitrault, Phys. Rev. D 46, 229 (1992)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhao-Qing Feng.

Additional information

Communicated by Xin-Nian Wang

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, J., Feng, ZQ., Chen, PH. et al. In-medium and isospin effects on eta production in heavy-ion collisions near threshold energies. Eur. Phys. J. A 53, 128 (2017). https://doi.org/10.1140/epja/i2017-12325-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2017-12325-3

Navigation