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Abstract. Using dispersion theory the low-energy electromagnetic form factors for the transition of a Sigma
to a Lambda hyperon are related to the pion vector form factor. The additionally required input, i.e. the
two-pion–Sigma–Lambda amplitudes are determined from relativistic next-to-leading-order (NLO) baryon
chiral perturbation theory including the baryons from the octet and optionally from the decuplet. Pion
rescattering is again taken into account by dispersion theory. It turns out that the inclusion of decuplet
baryons is not an option but a necessity to obtain reasonable results. The electric transition form factor
remains very small in the whole low-energy region. The magnetic transition form factor depends strongly
on one not very well determined low-energy constant of the NLO Lagrangian. One obtains reasonable
predictive power if this low-energy constant is determined from a measurement of the magnetic transition
radius. Such a measurement can be performed at the future Facility for Antiproton and Ion Research
(FAIR).

1 Introduction

The quest to understand the structure of matter does not
stop with identifying the building blocks of a composite
object. One wants to understand quantitatively how the
respective building blocks interact and how they are dis-
tributed inside of this composite object. Some possible
ways to explore the intrinsic structure of an object are

a) to excite it,
b) to scatter on it,
c) to replace some of its building blocks by other, similar

ones.

In atomic physics all these techniques produced key in-
sights and cross-checks of our understanding, for instance
by studying the hydrogen spectrum —related to a), by
Rutherford scattering —related to b), or by studying
systems with different atomic nuclei but the same number
of electrons or electronic versus muonic atoms —related
to c).

To explore the structure of the nucleon one proceeds
along similar lines. Concerning the excitation spectrum an
increasing number of nucleon resonances has been isolated
over the past decades [1]. The motivation of the present

a e-mail: stefan.leupold@physics.uu.se

work, however, derives more from an interplay of the ap-
proaches b) and c). A huge body of information has been
obtained from electron-nucleon scattering [2] and related
observables —with the most recent clue of an apparent dif-
ference in the proton charge radius as extracted from elec-
tronic or muonic hydrogen, respectively [3,4]. The central
objects are the electromagnetic form factors and the corre-
sponding low-energy quantities: electric charge, magnetic
moment, electric and magnetic radii. We note in passing
that the non-trivial magnetic moment of the proton pro-
vided one of the first hints on the intrinsic structure of the
proton [5]. If one flips the spin of one of the quarks inside
the nucleon, one obtains a Delta baryon1. The quantities
extracted from the scattering reactions electron-nucleon
to electron-Delta are the Delta-to-nucleon transition form
factors. Extrapolating to the photon point one obtains the
helicity amplitudes [1]. The transition form factors provide
complementary information about the structure of the nu-
cleon (and the Delta) and have also been studied in some
detail [6].

The lightest quarks, up and down, provide the con-
stituent-quark content of nucleon and Delta. Yet there is
one more comparatively light quark, the strange quark. In

1 One might interpret this spin flip in the sense of an excita-
tion a) or a replacement c), but in this case this classification
is merely language, not content.
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the spirit of approach c) one can ask what changes about
the nucleon (and/or the Delta) if one or several up or
down quarks are replaced by strange quarks. Historically,
the such obtained states, the hyperons, were instrumental
in revealing the quarks as the building blocks of the nucle-
ons and other hadrons [7]. This suggests that the intrinsic
structures of hyperons and nucleons are intimately related.
Obviously, hyperon electromagnetic form factors and tran-
sition form factors contain complementary information
to the nucleon and Delta form factors. Their knowledge
would provide tests for our current picture of the nu-
cleon structure and therefore deepen our understanding.
At low energies one can address the question how well
three-flavor chiral perturbation theory converges [8]. At
intermediate energies phenomenological models of the nu-
cleon might be capable to predict how the nucleon struc-
ture changes when a light quark is replaced by a strange
quark. Such predictions can be scrutinized by hyperon
data. At large momenta one is interested to see where
quark-number scaling [9] sets in and to which extent this
onset depends on the strange-quark mass. In general, sys-
tems with strangeness address the interplay of dynami-
cally generated and explicit mass since the strange-quark
mass is comparable to the dynamical scale set by ΛQCD [1].
Yet, the experimental information about hyperon form
factors is rather limited. Concerning low-energy data, es-
sentially only the magnetic moments of the octet hyper-
ons are known (and, of course, their charges) [1]. For the
decuplet-octet transitions not even the helicity amplitudes
have been determined.

Of course, this present limitation in the knowledge
about hyperon form factors is caused by the fact that
octet hyperons are not stable, but decay on account of
the weak interaction [1]. Therefore hyperon-electron scat-
tering is experimentally very difficult to realize. Yet, the
crossing symmetry of relativistic quantum fields provides
a new angle. While electron-baryon scattering probes the
form factors in the space-like region, hyperon form fac-
tors are accessible in the time-like2 region for high and
low energies. For high energies one can study electron-
positron scattering reactions to a hyperon and an anti-
hyperon. In principle, “direct” form factors and transi-
tion form factors are accessible here. For low energies one
can extract transition form factors from the Dalitz decays
Y → Y ′ e+e− where Y and Y ′ denote two distinct hy-
perons. Of course, it is a shortcoming that the space-like
region of the form factors is not easily accessible for hy-
perons. However, to some extent there is a compensation
for it. The weak decays of the hyperons are self-analyzing
in the sense that the angular distributions of the decay
products give access to the spin properties without ex-
plicit polarization. Thus one might get an easier access to
the various form factors as compared to the nucleon and
Delta-nucleon cases.

In the present and forthcoming works we will address
electromagnetic form factors of hyperons at low energies

2 Since there is some confusion in the literature we define
these phrases explicitly; time-like/space-like means: modulus
of energy larger/smaller than modulus of three-momentum.

from the theory side. The calculations will cover the whole
space- and time-like low-energy region, but at present the
experimental significance resides in the time-like Dalitz-
decay region. Such electromagnetic decays of hyperons
could be studied with high statistics at the future Facility
for Antiproton and Ion Research (FAIR) at Darmstadt,
Germany. There, hyperons will be copiously produced in
p̄ p (PANDA [10]) and p p (HADES3) collisions. In the
present work we study the only form factors in the octet
sector that are connected to a Dalitz decay, namely the
electric and the magnetic transition form factor of the neu-
tral Σ0 hyperon to the Λ hyperon. These transition form
factors are accessible by high-precision measurements of
the decay Σ0 → Λe+e−.

The main part of the present work deals with the cal-
culation of these transition form factors. However, some
discussion about the experimental feasibility is appropri-
ate: The transition form factors are functions of the in-
variant mass of the dilepton, i.e. of the e+e− system. To
resolve the shape of a form factor requires some range
of invariant masses. For the Dalitz decay Σ0 → Λe+e−

the upper limit of available invariant masses is given by
mΣ0−mΛ ≈ 77MeV. This is not very large as compared to
typical hadronic scales. Thus, to extract even the electric
or magnetic transition radius —the first non-trivial aspect
of a form factor— requires a high experimental precision.
In addition, the extraction of these radii from decay data
relies on a proper understanding of the electromagnetic
part. The lowest-order QED part is easily worked out.
However, if the impact of the hyperon transition form fac-
tors/radii is numerically small, then radiative QED correc-
tions compete with the hadronic form-factor effects. This
interplay will be explored in [12]. In the present work we
concentrate on the hadronic part, the calculation of the
hyperon electromagnetic form factors for the transition
Σ0 to Λ.

Chiral perturbation theory (χPT) provides a model-
independent approach to low-energy QCD [13–17]. Be-
yond the pseudo-Goldstone bosons it is possible to include
the baryon octet and maybe the decuplet [6,18,19], but it
is unclear how to treat other hadronic states in a system-
atic, model-independent way. In the interaction of hadrons
with electromagnetism the vector mesons turn out to be
very prominent [20]. For the isovector case the ρ meson in-
fluences the electromagnetic structure down to rather low
energies. Experimentally the ρ meson shows up as a reso-
nance in the p-wave pion phase shift and in the pion form
factor. Both quantities are nowadays known to high pre-
cision [21–24]. Therefore one might pursue the strategy
to marry purely hadronic χPT with the experimentally
known pion form factor. Dispersion theory allows to com-
bine these ingredients. This is similar in spirit to [24–28].
Concerning nucleon form factors see also [29–31]. In purely
hadronic χPT we will explore the options to consider ex-
plicitly the decuplet states as active degrees of freedom
or to include them only indirectly via the low-energy con-
stants of the next-to-leading order Lagrangian.

3 P. Salabura, private communication; see also [11] and ref-
erences therein.
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In the present work these ideas are applied to the Σ0-
to-Λ transition form factors. In contrast to elastic form
factors the transition has the advantage that it is purely
isovector. Therefore it provides a good first test case for
our formalism. A direct calculation in relativistic three-
flavor χPT has been performed in [8]. Therefore we can
check the accuracy of the obtained results before extend-
ing it to other more involved cases. As next steps one
could address in the future the transition of the decuplet
Σ (JP = 3

2

+) to the Λ hyperon and of the Δ to the nu-
cleon (for the latter case, see also [6]). Inclusion of the
isosinglet part of electromagnetism opens the way for all
elastic and transition form factors of octet and decuplet
hyperons. Of course, at least for the calculations with the
decuplet hyperons as initial states —as appropriate for the
corresponding Dalitz decays— one has to use a version of
χPT that includes the decuplet states as active degrees of
freedom. But, as we will see, the results obtained in the
present work suggest this anyway.

The rest of the paper is structured as follows: In the
next section the theoretical ingredients are described in
detail. Section 3 provides the results. Thereafter a sum-
mary and an outlook are presented. Appendices are added
to discuss technical aspects and cross-checks which would
interrupt the main text too much.

2 Ingredients

2.1 Dispersive representations

To apply dispersion theory we formally study the reaction
Σ0 Λ̄ → γ∗, saturate the intermediate states by a pion
pair and in the end extend the amplitude to the kinemat-
ical region Σ0 → Λγ∗. Technically this is along the lines
described, e.g., in [28] based on [32, 33]. We expect that
the saturation of the inelasticity by a pion pair provides a
good approximation for the transition form factors at low
energies.

The form factors are defined in [8]. For our case of
interest this reads

〈0|jμ|Σ0 Λ̄〉 = e v̄Λ

((
γμ +

mΛ − mΣ

q2
qμ

)
F1(q2)

− iσμν qν

mΛ + mΣ
F2(q2)

)
uΣ (1)

with

GE(q2) := F1(q2) +
q2

(mΣ + mΛ)2
F2(q2),

GM (q2) := F1(q2) + F2(q2). (2)

q2 denotes the square of the invariant mass of the virtual
photon. With the conventions of (1) the photon momen-
tum q is given by the sum of the momenta of the two hy-
perons. GE/M is called electric/magnetic transition form
factor, F1/2 is called Dirac/Pauli transition form factor.
The transition form factors are chosen such that they fit

to the direct form factors that are commonly introduced
for the baryon octet [8]. The appearance of 1/q2 in (1)
in connection with F1 enforces the vanishing of F1 and
therefore of GE at the photon point, i.e. GE(0) = 0.

To determine GM (0) = F2(0) we use the experimental
result for the decay Σ0 → Λγ. It is governed by the matrix
element

M = ūΛ
eiσμνqν

mΛ + mΣ
κuΣ εμ (3)

with κ = GM (0) [8]. The decay width is given by

ΓΣ0→Λγ =
e2 κ2 (m2

Σ − m2
Λ)3

8π m3
Σ (mΛ + mΣ)2

, (4)

which leads to κ ≈ 1.98 in agreement with the particle-
data-group (PDG) value [1]

μ := κ
e

mΛ + mΣ
= κ

2mp

mΛ + mΣ︸ ︷︷ ︸
≈1.61

e

2mP
. (5)

For later use we introduce the electric and magnetic
transition radii [8]:

〈r2
E〉 := 6

dGE(q2)
dq2

∣∣∣∣
q2=0

(6)

and

〈r2
M 〉 :=

6
GM (0)

dGM (q2)
dq2

∣∣∣∣
q2=0

. (7)

For the dispersive representation of the form factors
utilizing the two-pion intermediate state one needs a par-
tial-wave decomposition [34] and an evaluation of the form
factors and of the four-point amplitude Σ0 Λ̄ π+ π− for
different helicity states. It is convenient to work in the
center-of-mass frame, choose the z axis along the direc-
tion of motion of the Σ0 and choose the z-x plane as
the reaction plane. The corresponding spinors are explic-
itly given, e.g., in [35]. So basically one needs to evaluate
v̄Λ(−pz, λ)Γ uΣ(pz, σ) where Γ is an arbitrary spinor ma-
trix and σ and λ denote the helicities. Because of parity
invariance it is sufficient to evaluate this object for the
two cases σ = λ = +1/2 and σ = −λ = +1/2. Concerning
the form factors, for a given combination of helicities one
obtains an amplitude F (q2, σ, λ) that is a superposition of
the two form factors. In turn one can reconstruct the form
factors from combinations of these amplitudes.

In the center-of-mass frame all components of the cur-
rent in (1) vanish for σ = λ = +1/2 except for μ = 3. One
obtains

F (q2,+1/2,+1/2) =
v̄Λ(−pz,+1/2) γ3 uΣ(pz,+1/2)GE(q2). (8)

For σ = −λ = +1/2 all components vanish except for
μ = 1, 2 which are just related by a factor of i. One finds

F (q2,+1/2,−1/2) =
v̄Λ(−pz,−1/2) γ1 uΣ(pz,+1/2)GM (q2). (9)
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It is convenient and avoids kinematical singularities if
one divides out the respective spinor coefficient and for-
mulates dispersion relations directly for the electric and
magnetic form factor. However, one should first consider
for which pair of the four quantities GE , GM , F1 and F2

one would like to set up a (low-energy) dispersive repre-
sentation. Concerning a direct χPT calculation it has been
proposed in [8] to use the Dirac and Pauli form factor F1

and F2. From the point of view of our helicity decompo-
sition the electric and magnetic form factor seem to be
more direct. In principle, if one has an excellent input for
all these quantities, it should not matter. In reality, how-
ever, the relations (2) mix different powers of q2 which is
an issue in a necessarily truncated low-energy expansion
in powers of momenta. In the present work we will use the
electric and magnetic form factor as a starting point. We
have briefly explored the option to start with dispersive
representations for the Dirac and Pauli form factor, but
with the next-to-leading-order input of chiral perturba-
tion theory the results were less convincing. Clearly this
deserves more detailed studies in the future.

We will mainly use the subtracted dispersion relations
(see also [24])

GM/E(q2) = GM/E(0)

+
q2

12π

∫ ∞

4m2
π

ds

π

TM/E(s) p3
c.m.(s)FV ∗

π (s)
s3/2 (s − q2 − iε)

.

(10)

The subtraction constants that appear in (10) can be ad-
justed to match the form factors at the photon point,
GE(0) = 0, GM (0) = κ. In line with the names for the
form factors we will denote the corresponding amplitudes
TE and TM by electric and magnetic scattering amplitude,
respectively.

We might also examine an unsubtracted version

GM/E(q2) =
1

12π

∫ ∞

4m2
π

ds

π

TM/E(s) p3
c.m.(s)FV ∗

π (s)
s1/2 (s − q2 − iε)

(11)
and explore to which extent the pion loop plus pion rescat-
tering saturates the magnetic moment of the transition,

κ
?=

1
12π

∫ ∞

4m2
π

ds

π

TM (s) p3
c.m.(s)FV ∗

π (s)
s3/2

, (12)

or to which extent the dispersively calculated “charge”
vanishes:

0 ?=
1

12π

∫ ∞

4m2
π

ds

π

TE(s) p3
c.m.(s)FV ∗

π (s)
s3/2

. (13)

In general we expect that the subtracted dispersion re-
lations work much better than the unsubtracted ones.
An exact dispersive representation for the form factors
would include all possible inelasticities. In our framework
we use only the two-pion inelasticity. Thus we neglect
for instance the inelasticities caused by four pions, by a
kaon-antikaon pair, by a baryon-antibaryon pair, . . . . In

practice these mesonic inelasticities start at
√

s ≈ 1GeV
and the baryonic ones at around 2GeV; see also the cor-
responding discussion in [31]. Thus, all these inelastici-
ties except for the one caused by two pions are “high-
energy inelasticities”. If we limit ourselves to low values
of q2, then the influence of these high-energy inelastici-
ties is suppressed by powers of 1/s. The more subtrac-
tions one uses in the dispersive representation, the higher
the suppression of the unaccounted high-energy inelastic-
ities. Thus we have more trust in the subtracted disper-
sion relations (10) than in (11). If we found in practice a
semi-quantitative agreement for the unsubtracted disper-
sion relations (12) and (13), then we would assume that
the subtracted dispersion relations work well on a quanti-
tative level. On the other hand, the subtracted dispersion
relations are sufficient to deduce low-energy quantities like
radii —(6), (7)— and curvatures. The general philosophy
is that low-energy structures, i.e. variations in energy, are
mainly caused by low-energy physics, the two-pion inter-
mediate states.

In the dispersive formulae the quantity FV
π denotes the

pion form factor defined by

〈0|jμ|π+(p+)π−(p−)〉 = e (pμ
+ − pμ

−)FV
π ((p+ + p−)2).

(14)
On account of (8) and (9) we consider the cases μ = 3, 1.
The corresponding difference of the pion momenta in (14)
produces the angular dependence ∼ cos θ = d1

0,0(θ) for μ =
3 and ∼ sin θ cos ϕ = −d1

1,0(θ) (eiϕ + e−iϕ)/
√

2 for μ = 1.
Following [34] we have introduced Wigner’s d-matrices;
d1
0,0(θ) = cos θ and d1

1,0(θ) = − sin θ/
√

2.
TE/M are the reduced amplitudes for the reaction

Σ0 Λ̄ → π+ π− projected on J = 1. We introduce them in
two steps. We start with the general form of the reaction’s
invariant amplitude [34]

M̃(s, θ, ϕ, σ, λ) =
1
pz

∑
J

(
J +

1
2

)
φJ(s; 0, 0, σ, λ) dJ

(σ−λ),0(θ) ei(σ−λ)ϕ ,

(15)

where φJ(s;λc, λd, λa, λb) are Jacob/Wick helicity ampli-
tudes for a reaction a, b → c, d with total angular momen-
tum J and dJ

(λc−λd),(λa−λb)
(θ) are the associated rotation

matrices. For simplicity we also introduce

M(s, θ, σ, λ) := M̃(s, θ, ϕ = 0, σ, λ). (16)

We are interested in J = 1. Using the orthogonal proper-
ties of the rotation matrices to invert (15) yields [34]

φ1(s; 0, 0, σ, λ) = pz

∫ π

0

dθ sin θM(s, θ, σ, λ) d1
(σ−λ),0(θ).

(17)
By comparison with the angular dependence emerging
from the pion form factor we see that we have to focus on
d1
0,0 and −d1

1,0/
√

2. Therefore we introduce the reduced
amplitudes as

TE(s) :=
3
2

φ1(s; 0, 0,+1/2,+1/2)
v̄Λ(−pz,+1/2)γ3uΣ(pz,+1/2)pc.m.pz

, (18)
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and

TM (s) := − 3
2
√

2
φ1(s; 0, 0,+1/2,−1/2)

v̄Λ(−pz,−1/2) γ1 uΣ(pz,+1/2) pc.m.pz
.

(19)
pc.m. is the pion center-of-mass momentum. The reduced
amplitudes are related to the general amplitudes by

M(s, θ,+1/2,+1/2) =

v̄Λ(−pz,+1/2) γ3 uΣ(pz,+1/2) pc.m. TE(s) d1
0,0(θ)

+ other partial waves, J �= 1, (20)

and

M(s, θ,+1/2,−1/2) =

−
√

2 v̄Λ(−pz,−1/2) γ1 uΣ(pz,+1/2) pc.m. TM (s) d1
1,0(θ)

+ other partial waves, J �= 1. (21)

Finally (17) turns to

TE(s) =

3
2

∫ π

0

dθ sin θ
M(s, θ,+1/2,+1/2)

v̄Λ(−pz,+1/2)γ3 uΣ(pz,+1/2) pc.m.
cos θ

(22)

and

TM (s) =

3
4

∫ π

0

dθ sin θ
M(s, θ,+1/2,−1/2)

v̄Λ(−pz,−1/2) γ1 uΣ(pz,+1/2) pc.m.
sin θ.

(23)

In practice these formulae are used for the bare input, not
for the full amplitudes that contain pion rescattering.

Schematically the dispersion relation is depicted in
fig. 1.

For the amplitude TE/M one should also consider pion
rescattering encoded in the Omnès function

Ω(s) = exp

{
s

∫ ∞

4m2
π

ds′

π

δ(s′)
s′ (s′ − s − iε)

}
≈ FV

π (s),

(24)
where δ denotes the pion p-wave phase shift [21, 22].
This is depicted in fig. 2. In practice we will follow the
recipe of [23] and parametrize the phase shift such that it
smoothly reaches π at infinity. Contrary to [23] we do not
include other inelasticities in the pion form factor, i.e. we
do not distinguish between Ω and FV

π . For our low-energy
calculation this should not matter too much. Indeed we
will see that other uncertainties are more severe.

The dispersive formalism used here assumes the ab-
sence of anomalous thresholds. They would appear if the
left-hand cuts of the pion-hyperon amplitudes of figs. 1
and 2 contained poles for s > 4m2

π. In turn this translates
to masses mexch that satisfy

m2
exch <

1
2

(
m2

Σ + m2
Λ − 2m2

π

)
. (25)

Λ

Σ

→

Λ

Σ

π−

π+

Fig. 1. The transition form factors are obtained from their
two-pion inelasticity.

π

π

Λ

Σ

→

π

π

Λ

Σ

π

π

Fig. 2. The scattering amplitude is obtained from the two-
pion rescattering and a part (box) containing only left-hand
cuts and a polynomial.

The object with such a mass must have strangeness,
baryon number and electric charge. The latter is required
because neutral pions do not couple to photons because
of the charge-conjugation symmetry of the strong and
electromagnetic interaction. The lowest-mass state with
strangeness, baryon number and charge is the single-par-
ticle state Σ+ [1]. It violates the condition (25). This guar-
antees the absence of anomalous thresholds.

Along the lines of [28,33] one needs an approximation
for the “bare” four-point amplitude K of Σ0 Λ̄ → π+ π−,
where pion rescattering is ignored. In other words one
needs the left-hand cuts of this amplitude. Ideally one
would like to obtain this amplitude from (dispersion the-
ory and) data from the crossed channel, i.e. from hyperon-
pion scattering. Indeed, for the corresponding isovector
part of the nucleon form factors such an analysis has been
performed recently [31] based on a dispersive Roy-Steiner
analysis of pion-nucleon scattering [36]. Since pions and
hyperons are unstable, data on pion-hyperon scattering
will not be available in the near future. For a coupled-
channel analysis of pion-nucleon and kaon-nucleon scat-
tering data with hyperons at least in the final states
see [37]. We note in passing that strangeness channels are
even important for pion-nucleon scattering: The disper-
sive Roy-Steiner analysis of pion-nucleon scattering [36]
requires a coupled-channel analysis of pion-nucleon and
kaon-nucleon scattering for the s-wave [38].

In lack of pion-hyperon scattering data we resort to
the second best option and use in the following relativis-
tic three-flavor χPT at next-to-leading order (NLO) to
determine K. Strictly speaking the reaction amplitude for
Σ0 Λ̄ → π+ π− does not exist in baryon χPT, because
there are no antibaryons in this framework. But the cross-
channel amplitude Σ0 π+ → Λπ+ does exist and cross-
ing symmetry and analytical continuation will provide the
right answer.
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Given any input for K, the scattering amplitude T is
obtained by [28]

T (s) = K(s) + Ω(s)Pn−1(s)

+Ω(s) sn

∫ ∞

4m2
π

ds′

π

sin δ(s′)K(s′)
|Ω(s′)| (s′ − s − iε) s′n

,

(26)

where Pn−1 denotes a polynomial of degree n − 1.
Note that any polynomial part of K can be put into

Pn−1 and need not be carried through the dispersion in-
tegral. Thus one can split up the calculated Feynman am-
plitudes into a part Mpole that contains the left-hand cuts
—in practice they will emerge from the pole terms of u-
and t-channel exchange diagrams— and a part Mcontact

that is purely polynomial. Recalling the projection formu-
lae (22) and (23) this leads to

KE(s) =
3
2

∫ π

0

dθ sin θ
Mpole(s, θ,+1/2,+1/2)

v̄Λ(−pz,+1/2) γ3 uΣ(pz,+1/2) pc.m.
cos θ

(27)

and

PE
n−1(s) =

3
2

∫ π

0

dθ sin θ
Mcontact(s, θ,+1/2,+1/2)

v̄Λ(−pz,+1/2) γ3 uΣ(pz,+1/2) pc.m.
cos θ

(28)

and the equivalent formulae for the magnetic part.
As already spelled out we will use three-flavor χPT to

determine K and the polynomial Pn−1. Two versions are
conceivable. One might or might not include the decuplet
states explicitly. We will explore both options in the fol-
lowing. In any case we will restrict ourselves to NLO. As
will be discussed below, leading order (LO) boils down to
the exchange diagrams π+ Σ0 → Σ+ → π+ Λ and (op-
tionally) π+ Σ0 → Σ∗+ → π+ Λ (s and u channel —or,
concerning Σ0 Λ̄ → π+ π−, t and u channel). Here Σ∗ de-
notes a decuplet state. The coupling constant of the latter
can be adjusted to the measured decay widths Σ∗ → π Λ
or Σ∗ → π Σ; see further discussion below. NLO adds
just contact terms (and provides the flavor splitting that
leads to the physical masses of the states instead of one
averaged mass per multiplet). If the decuplet states are
not included explicitly, then the size of the NLO contact
terms is modified such that the static version of the decu-
plet exchange is implicitly accounted for [39]. Loops ap-
pear only at next-to-next-to leading order (NNLO). They
would bring in additional left-hand cuts. Our approxima-
tion for the input is depicted in fig. 3.

In formula (26) the pion loop starts to contribute when
Ω(s) deviates from unity. This happens at order s. There-
fore we cannot constrain the polynomial Pn−1 better than
to a constant, if our input is restricted to tree level, i.e.
NLO of χPT. In other words we have to use n = 1 and
drop all polynomial terms of higher order. We will see be-
low that the Born terms produce a polynomial of order 0,

π

π

Λ

Σ

≈
π

π

Λ

Σ

Σ/Σ∗ +

π

π

Λ

Σ

Fig. 3. The “bare” input (box) is obtained from NLO χPT.

i.e. a constant. For the magnetic/electric part the NLO
contact term produces a polynomial of order 0/1 —see
(50), (51) below. Thus one should keep the NLO contri-
bution for the magnetic part, but not for the electric. All
this is in line with the treatment of [8] as described in de-
tail in Kubis’ PhD Thesis [40] in the following sense. In a
direct χPT calculation of the form factors the NLO con-
tact term contributes only to the Pauli form factor F2 [40].
On account of (2) the impact of F2 on GE relative to GM

is suppressed for low q2.
As we will discuss below, the decuplet-exchange terms

yield polynomials which depend on the spurious spin-1/2
contributions. For the electric part the ambiguity is of sec-
ond chiral order which should be dropped anyway. For the
magnetic part there is a constant term which can be ac-
counted for equally well by the NLO contact term. Thus
the polynomial part formally emerging from the decuplet
exchange can be entirely dropped for the magnetic contri-
bution. To obtain the proper low-energy limit of χPT we
should use

PE
0 = PE

Born + PE
res,

PM
0 = PM

Born + PM
NLO χPT − KM

res,low, (29)

where the label “Born” denotes the Sigma exchange and
“res” the exchange of the decuplet resonance. The label
“NLO χPT” refers to χPT without the decuplet. KM

res,low
denotes the low-energy limit of the resonance-pole con-
tribution to the magnetic amplitude. A detailed analysis
reveals that there are some subtleties with this low-energy
limit due to the left-hand cut structure of the resonance-
exchange contributions. This is discussed in detail in ap-
pendix B based on the results (54) below.

Note that the relation for the electric polynomial im-
plies

PE
res + KE

res,low = higher order (30)

to be consistent with the low-energy limit of χPT. We
have checked that this is indeed the case.

Let us briefly discuss the convergence of the integrals
in (10) and (26): If the pole terms from the Born diagrams
(octet exchange) are projected on J = 1, they scale like
(log s)/s for large s. The subtracted dispersion relation
in (26) converges very well. The high-energy behavior of
the curly bracket is then ∼ s0. Since the Omnès function
behaves like 1/s, the whole amplitude scales like (log s)/s
at large s. This provides a very convergent integral in (10).
The decuplet changes the picture to some extent: The pole
terms diverge like log s. Still this leads to convergent in-
tegrals.
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On the other hand, the analytic structure of the scat-
tering amplitudes KM/E changes where pz or pc.m. have
their zeros. This happens at s1 := (mΣ−mΛ)2, s2 := 4m2

π

and s3 := (mΣ + mΛ)2. We are interested in q2 < s1

for the transition form factors (10) and we try to ob-
tain a reasonable approximation for the scattering am-
plitudes KM/E(s) and TM/E(s) in the low-energy part of
s2 ≤ s < s3. Thus it does not make sense to evaluate the
functions outside of s2 ≤ s < s3.

In practice we will terminate the integration range
in (10) and in (26) by a finite cutoff Λ2 and check the
sensitivity of our results to a variation in Λ. From the
previous considerations it is clear that we should keep the
cutoff Λ below

√
s3 = mΣ + mΛ. We will vary Λ between

1 and 2GeV and study the impact of this change on the
results.

2.2 Lagrangians, parameters and input tree-level
amplitudes

The relevant interaction part of the LO chiral La-
grangian [8] including only the octet baryons as active
degrees of freedom is given by

L(1)
8 = i〈B̄γμDμB〉 +

D

2
〈B̄ γμ γ5 {uμ, B}〉

+
F

2
〈B̄ γμ γ5 [uμ, B]〉 (31)

with the octet baryons collected in

B =

⎛
⎜⎜⎜⎜⎜⎜⎝

1√
2

Σ0 +
1√
6

Λ Σ+ p

Σ− − 1√
2

Σ0 +
1√
6

Λ n

Ξ− Ξ0 − 2√
6

Λ

⎞
⎟⎟⎟⎟⎟⎟⎠

,

(32)
the Goldstone bosons encoded in

Φ =

⎛
⎜⎜⎜⎜⎜⎜⎝

π0 +
1√
3

η
√

2 π+
√

2 K+

√
2π− −π0 +

1√
3

η
√

2 K0

√
2 K− √

2 K̄0 − 2√
3

η

⎞
⎟⎟⎟⎟⎟⎟⎠

, (33)

u2 := U := exp(iΦ/Fπ), uμ := i u†(∇μU)u† = u†
μ,

(34)

and 〈. . .〉 denoting a flavor trace. The chirally covariant
derivatives are defined by

DμB := ∂μB + [Γμ, B] (35)

with

Γμ :=
1
2

(
u† (∂μ − i(vμ + aμ)) u

+ u (∂μ − i(vμ − aμ)) u†) , (36)

and

∇μU := ∂μU − i(vμ + aμ)U + iU (vμ − aμ) (37)

where v and a denote external sources.
If one includes also the decuplet states as active de-

grees of freedom in χPT, then the relevant interaction
part of the LO chiral Lagrangian reads [6, 19,41]

L(1)
8+10 = L(1)

8

+
1

2
√

2
hA εade gμν (T̄μ

abc uν
bd Bce + B̄ec uν

db Tμ
abc),

(38)

where the decuplet is expressed by a totally symmetric
flavor tensor Tabc with [19]

T111 = Δ++, T112 =
1√
3

Δ+,

T122 =
1√
3

Δ0, T222 = Δ−,

T113 =
1√
3
Σ∗+, T123 =

1√
6
Σ∗0, T223 =

1√
3
Σ∗−,

T133 =
1√
3

Ξ∗0, T233 =
1√
3

Ξ∗−, T333 = Ω.

(39)

The last term in (38) provides the pion-hyperon three-
point interactions. Of course, it is not unique how to write
down this interaction term [6,18,19,37,39,42]. In principle,
all differences can be encoded in the contact interactions
that show up in χPT at NLO; see below. In practice, it
might happen that different versions of the LO three-point
interaction terms once used with physical masses induce
flavor-breaking effects that are not entirely accounted for
by NLO contact terms. From a formal point of view such
effects are NNLO, but in practice it might matter to some
extent; see also the discussion in [37]. In the present work
we are not interested in a description of all hyperon form
factors, but focus on the Σ0-to-Λ transition. If one does
not use or insist on cross-relations between NLO parame-
ters induced by three-flavor symmetry, then all differences
between different versions of the three-point interactions
can be moved to the contact interactions. Below we will
explore explicitly two versions of the LO three-point in-
teraction term to substantiate our statements.

For the coupling constants we use Fπ = 92.4MeV,
D = 0.80, F = 0.46 [8] and hA determined from the partial
decay width Σ∗ → π Λ or Σ∗ → π Σ. The partial width
for the decay of a decuplet state with mass M into an
octet state with mass m plus a pion and with a coefficient
c in the lagrangian of type (38) is given by

Γ =
c2

12π
p̃3
c.m.

EB + m

M
, (40)

where EB =
√

m2 + p̃2
c.m. (p̃c.m.) is the energy (momen-

tum) of the outgoing baryon in the rest frame of the
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decaying resonance. For the decays of interest one finds
from the explicit interaction Lagrangian (38): cΣ∗Λπ =
hA/(2

√
2Fπ), and cΣ∗Σπ = hA/(2

√
6Fπ). (Note that there

are always two decay branches possible for each decay
Σ∗ → Σπ.) Matching to the experimental results yields
hA = 2.4 from Σ∗ → Λπ and hA ranging between 2.2 and
2.3 from Σ∗ → Σπ —here the mass differences between
isospin partners matter! For the numerical calculations we
will explore the range

hA = 2.3 ± 0.1. (41)

We note in passing that one obtains a somewhat larger
value for hA from the partial decay width Δ → Nπ. Here
cΔNπ = hA/(2Fπ) and hA = 2.88. Finally one might
look at the large-Nc prediction (see, e.g., [18, 43] and
references therein — Nc denotes the number of colors):
hA = 3gA/

√
2 = 2.67 with gA = F + D = 1.26. In the fol-

lowing we will use hA for the vertices Σ∗Λπ and Σ∗Σπ.
Therefore we regard the determination from the Σ∗ decays
as the most reasonable ones for our purposes. The differ-
ence to the determination from the Δ decay points to-
wards flavor breaking effects for this coupling which shows
up at NNLO in the chiral counting.

According to [44] a complete and minimal NLO La-
grangian for the baryon-octet sector is given by

L(2)
8 = bD〈B̄{χ+, B}〉 + bF 〈B̄[χ+, B]〉 + b0〈B̄B〉〈χ+〉

+ b1〈B̄[uμ, [uμ, B]]〉 + b2〈B̄{uμ, {uμ, B}}〉
+ b3〈B̄{uμ, [uμ, B]}〉 + b4〈B̄B〉〈uμuμ〉
+ ib5

(
〈B̄[uμ, [uν , γμDνB]]〉

−〈B̄←−
Dν [uν , [uμ, γμB]]〉

)
+ ib6

(
〈B̄[uμ, {uν , γμDνB}]〉

−〈B̄←−
Dν{uν , [uμ, γμB]}〉

)
+ ib7

(
〈B̄{uμ, {uν , γμDνB}}〉

−〈B̄←−
Dν{uν , {uμ, γμB}}〉

)
+ ib8

(
〈B̄γμDνB〉 − 〈B̄←−

DνγμB〉
)
〈uμuν〉

+
i

2
b9 〈B̄uμ〉〈uνσμνB〉

+
i

2
b10 〈B̄{[uμ, uν ], σμνB}〉

+
i

2
b11 〈B̄[[uμ, uν ], σμνB]〉

+ d4〈B̄{fμν
+ , σμνB}〉 + d5〈B̄[fμν

+ , σμνB]〉 (42)

with χ± = u†χu† ± uχ†u and χ = 2B0 (s + ip) obtained
from the scalar source s and the pseudoscalar source p.
The low-energy constant B0 is essentially the ratio of the
light-quark condensate to the square of the pion-decay
constant.

We note in passing that Frink and Meißner [45] agree
with [44] at the NLO level displayed in (42), though not at
NNLO. To be in line with the conventions of [8] we have re-
labeled some of the coupling constants of [44]: d1 → b10/2,
d2 → b11/2, d3 → b9/2. The terms ∼ bD/F provide the

mass splitting for the octet states. Concerning the inter-
action terms for Λ̄Σ0π+π− only bD, b3, b6, and b10 con-
tribute. A more detailed investigation reveals that the b6

term is not of NLO in this channel. Concerning the scat-
tering of baryon-antibaryon to two pions the bD, b3 terms
do not contribute to the p-wave. Thus for our p-wave am-
plitudes we will only need a value for b10. If we do not in-
clude the decuplet states as explicit degrees of freedom, we
can take the value of b10 from the corresponding works on
χPT. In [39] a value of b10 ≈ 0.95GeV−1 has been given.
In [8] a somewhat larger value is used, b10 ≈ 1.24GeV−1.
In our calculations we will explore the range

b10 = (1.1 ± 0.25)GeV−1. (43)

In practice this is all we need to provide input for (29).
To illuminate the meaning and input for the contact in-

teractions we add the following discussion. Unfortunately
the value for b10 is not entirely based on experimental in-
put. Instead a resonance saturation assumption enters the
estimate for b10 [39]. In this framework a significant part
of the value for b10 comes from the contribution of the de-
cuplet exchange. Thus if the decuplet baryons are included
as active degrees of freedom the low-energy constants in
the NLO lagrangian must be readjusted. We denote the
NLO low-energy constants of octet+decuplet χPT by b̃...

instead of b.... Consequently the relevant part of the NLO
Lagrangian for octet+decuplet χPT is given by

L(2)
8+10 = L(2)

8

∣∣∣
b...→b̃...

+ mass splitting for decuplet. (44)

Note that this is not the complete NLO Lagrangian of
octet+decuplet χPT, only the part relevant for our pur-
poses.

As already stressed, the only NLO low-energy constant
that really matters for our calculations is b10 or b̃10, re-
spectively. To relate these two quantities in the most rea-
sonable way in view of the ΣΛπ+π− amplitude we have to
determine the low-energy and/or chiral-limit contribution
to this amplitude from the decuplet exchange (see further
discussion below). If we denote this contribution by bres

10 we
have to choose b̃10 such that the sum produces the result
of pure baryon-octet χPT:

b̃10 + bres
10 = b10. (45)

On the other hand, if we are not interested in an explicit
value for b̃10 we can just use (29).

Alternatively to the resonance saturation of [39] one
might utilize input from [37]. There, scattering data on
pion-nucleon and kaon-nucleon have been described by a
chiral coupled-channel Bethe-Salpeter approach. In this
framework the contact interactions have been determined
from large-Nc constraints and fits to the scattering data.
We have checked explicitly that these contact interac-
tions can be translated to a b10 parameter that is in the
range given in (43). Thus in practice we use (29) together
with (43).

For the tree-level calculation of the four-point ampli-
tude π+ π− Σ0 Λ̄ there can be exchange contributions from
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the three-point vertices ∼ D,F, hA and contact interac-
tions from the NLO terms. In addition, one might get a
contact term of Weinberg-Tomozawa type [46,47] from the
chiralized kinetic term, i.e. from tr(B̄γμ[Γμ, B]). However,
if one considers only pions, the non-trivial part of Γμ re-
sides only in the first two rows and columns. There, how-
ever, the Λ part of B is proportional to the unit matrix.
Therefore, the commutator [Γμ, B] vanishes and there is
no Weinberg-Tomozawa term for the four-point amplitude
we are interested in. (Considering Λ̄ for B̄ and Σ0 for B
does not change the argument, because one can shift the
commutator to B̄ within the flavor trace.)

The Feynman amplitude for the Born terms (exchange
of octet Σ±) is given by

MBorn =

D F√
3F 2

π

(
v̄ΛuΣ mΣ (m2

Σ − m2
Λ)

(
1

t − m2
Σ

− 1
u − m2

Σ

)

+ v̄ΛγμkμuΣ mΣ (mΣ + mΛ)
(

1
t − m2

Σ

+
1

u − m2
Σ

)

+ v̄ΛγμkμuΣ

)
(46)

where k = p+ − p− denotes the difference of the pion
momenta and t = (pΣ − p+)2. In the center-of-mass sys-
tem we have k = (0, 2 pc.m. sin θ, 0, 2 pc.m. cos θ). In line
with (20), (21) we introduce reduced amplitudes. One ob-
tains for the electric case, σ = λ = +1/2:

MBorn

v̄Λ(−pz,+1/2) γ3 uΣ(pz,+1/2) pc.m.
=

D F√
3F 2

π

(
− s − (mΣ + mΛ)2

2 pc.m. pz
mΣ (mΣ − mΛ)

×
(

1
t − m2

Σ

− 1
u − m2

Σ

)

− 2 cos θ mΣ (mΣ + mΛ)
(

1
t − m2

Σ

+
1

u − m2
Σ

)

− 2 cos θ

)
. (47)

For the magnetic case, σ = −λ = +1/2, one finds

MBorn

v̄Λ(−pz,−1/2) γ1 uΣ(pz,+1/2) pc.m.
=

D F√
3F 2

π

(
− 2 sin θ mΣ(mΣ + mΛ)

(
1

t − m2
Σ

+
1

u − m2
Σ

)

− 2 sin θ

)
. (48)

Obviously we have pole terms and non-pole terms
in (47) and (48). The respective p-wave projection is car-
ried out by (22), (23). We denote the result for the pole
terms by K

E/M
Born (s) and refrain from providing explicit ex-

pressions here. From (47), (48) one can immediately ob-
tain

PM
Born = PE

Born = −2
D F√
3F 2

π

. (49)

Note that the combination 1
t−m2

Σ
+ 1

u−m2
Σ

is a rational

function in s, i.e. no square roots show up. Thus there is no
problem with the analytical continuation of the amplitude
below its nominal threshold s = (mΣ + mΛ)2. The same
holds true for the combination 1

pc.m. pz
( 1

t−m2
Σ

− 1
u−m2

Σ
).

Concerning the analytic structure of the Born amplitudes
in relation to electromagnetic form factors see also [48].

From the NLO Lagrangian (42) one obtains amplitudes
∼ v̄ΛuΣ and ∼ v̄ΛiσμνuΣpμ

+pν
−. The first amplitude does

not contribute to J = 1. The second one yields for the
electric case, σ = λ = +1/2:

v̄Λ(−pz,+1/2)iσμνuΣ(pz,+1/2)pμ
+pν

− =

v̄Λ(−pz,+1/2) γ3 uΣ(pz,+1/2)
s pc.m. cos θ

mΣ + mΛ
, (50)

and for the magnetic case, σ = −λ = +1/2:

v̄Λ(−pz,−1/2)iσμνuΣ(pz,+1/2)pμ
+pν

− =

v̄Λ(−pz,−1/2) γ1 uΣ(pz,+1/2) pc.m. sin θ (mΣ + mΛ).

(51)

The overall coupling constant and flavor factor that mul-
tiplies these expressions to obtain the Feynman amplitude
is +4b10/(

√
3F 2

π ).
As already spelled out, the electric part ∼ s is beyond

our accuracy of NLO χPT. The magnetic part provides

PM
NLO χPT =

4b10√
3F 2

π

(mΣ + mΛ). (52)

Working with relativistic spin-3/2 Rarita-Schwinger
fields is plagued by ambiguities how to deal with the spuri-
ous spin-1/2 components. In the present context the inter-
action term ∼ hA causes not only the proper exchange of
spin-3/2 resonances, but induces an additional contact in-
teraction. This unphysical contribution can be avoided by
constructing interaction terms according to [18,42] or [49].
The Pascalutsa prescription boils down to the replace-
ment [6, 42]

Tμ → − 1
mR

ενμαβ γ5 γν ∂αTβ (53)

where mR denotes the resonance mass. Strictly speaking
this procedure induces an explicit flavor breaking, but
such effects are anyway beyond leading order. In prac-
tice, we take the (average) mass of the Σ∗ resonance,
mR := mΣ∗ ≈ 1.385GeV.

The spurious spin-1/2 components can only provide
contact terms, i.e. polynomial terms, which do not have a
left-hand cut. Therefore they are completely irrelevant, if
the polynomial part of the amplitude is determined any-
way by matching the expression (26) to χPT. This is the
essence of (29). We will perform calculations with both
interaction terms, the “naive” one given in (38) and the
“consistent” interaction obtained by (53). We will see that
the pole terms remain unchanged.
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Using the “naive” interaction term from (38) the con-
tributions from the exchange of Σ∗ decuplet baryon reso-
nances are given by

Mn
res =

h2
A

8
√

3F 2
π

(
v̄ΛuΣ

mΣ + mΛ

12m2
Σ∗

(t − u)

− v̄ΛuΣ F (s)
(

1
t − m2

Σ∗
− 1

u − m2
Σ∗

)

+v̄ΛγμkμuΣ
1

12m2
Σ∗

(
−2m2

Σ∗−2mΣ∗(mΣ + mΛ)

+m2
Σ + m2

Λ + s − 6m2
π

)

+ v̄ΛγμkμuΣ
1
2

G(s)
(

1
t − m2

Σ∗
+

1
u − m2

Σ∗

))

(54)

with

F (s) :=
(

mΣ + mΛ

2
+ mΣ∗

)
H1(s)

+
(

mΣ + mΛ

2
− mΣ∗

)
H2, (55)

G(s) := H1(s) + H2, (56)

H1(s) :=
m2

Σ + m2
Λ − s

2

− (m2
Λ + m2

Σ∗ − m2
π)(m2

Σ + m2
Σ∗ − m2

π)
4m2

Σ∗
,

H2 :=
1
3

(
mΛ +

m2
Λ + m2

Σ∗ − m2
π

2mΣ∗

)

×
(

mΣ +
m2

Σ + m2
Σ∗ − m2

π

2mΣ∗

)
. (57)

As a cross-check for our calculations we have calcu-
lated the nucleon- and Delta-exchange contributions to
pn̄ → π+π0. They are related by large-Nc relations; see
appendix A.

Only the contact terms change if one uses the “consis-
tent” Pascalutsa interaction obtained by (53)

MP
res =

h2
A

8
√

3F 2
π

(
v̄ΛuΣ

4mΣ∗ + 3mΣ + 3mΛ

12m2
Σ∗

(t − u)

− v̄ΛuΣ F (s)
(

1
t − m2

Σ∗
− 1

u − m2
Σ∗

)

+ v̄ΛγμkμuΣ
1

12m2
Σ∗

×
(
−2m2

Σ∗ + 2mΣ∗ (mΣ + mΛ) + 3m2
Σ + 3m2

Λ

+4mΣmΛ − 5s + 2m2
π

)

+ v̄ΛγμkμuΣ
1
2

G(s)
(

1
t − m2

Σ∗
+

1
u − m2

Σ∗

) )
.

(58)

We see that in (54) and (58) the pole terms agree for both
prescriptions. We use these pole terms to obtain K

E/M
res (s).

The polynomial contribution to the electric amplitude is
given by

PE
res =

h2
A

24
√

3F 2
π m2

Σ∗

×(m2
Σ∗ + mΣ∗ (mΣ + mΛ) + mΣ mΛ)

+O(m2
π, s). (59)

Only the subleading parts ∼ m2
π, s are different for (54)

and (58). We will neglect them in the following and just
use:

PE
res ≈

h2
A

24
√

3F 2
π m2

Σ∗

×(m2
Σ∗ + mΣ∗ (mΣ + mΛ) + mΣ mΛ). (60)

Finally we need the low-energy limit of KM
res(s) for the

matching procedure spelled out in eq. (29). Due to the
left-hand cut structure of this amplitude there are some
subtleties with this low-energy limit. This is discussed in
detail in appendix B. The result of these considerations is

KM
res,low =

h2
A

24
√

3F 2
π

× (−m2
Σ∗ + 4mΣ∗mΣ − m2

Σ) (mΣ∗ + mΣ)
m2

Σ∗ (mΣ∗ − mΣ)
.

(61)

The formulae (49), (52), (60), (61) together with

KE/M (s) = K
E/M
Born (s) + KE/M

res (s) (62)

fully determine the input for (26), (29). Starting concep-
tually from octet χPT one can study the successive ap-
proximations of using a) “Born”: only the Born terms,
b) “NLO”: Born plus NLO contact terms, and finally
c) “NLO+res”: the impact of including explicitly the de-
cuplet exchange. Note that for the electric case there are
no NLO corrections. Here we study “Born” and the ad-
dition of resonances. To avoid a clutter of expressions we
call the latter option also “NLO+res”.

3 Results

As a first step we fix the input parameters to the central
values given in (41) and (43), respectively. We address
mainly two questions: How important is the exchange of
decuplet resonances if their static part is already taken
into account by NLO χPT? How strongly do the results
depend on the cutoff Λ? We will show results for Λ equal
to 1 and 2GeV, respectively.

Figures 4–7 show real and imaginary part of the for-
mal (sub-threshold) electric and magnetic scattering am-
plitudes. Obviously the pion rescattering drastically re-
shapes the amplitudes providing the expected structure
around the rho meson. Only at very low energies the im-
pact of pion rescattering is negligible. From the magnetic
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Fig. 4. Real part of the magnetic scattering amplitude. Top:
Λ = 1 GeV; middle: Λ = 2 GeV; bottom: Comparison of the
complete result (“NLO+res”) for the two values of the cutoff
Λ. The label “bare” denotes the input amplitude K, the label
“full” the amplitude including pion rescattering. For the non-
color version we spell out the ordering of curves as they start
out from the left. In the top and middle panel from top to
bottom one has 1. “full NLO”, 2. “full NLO+res”, 3. “bare
NLO”, 4. “bare NLO+res”, 5. “bare Born”, 6. “full Born”.

sector we observe that the NLO term qualitatively changes
all the results as compared to the pure Born terms. The
explicit resonance terms do not change the qualitative pic-
ture any more, but “damp” to some extent the structures
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Fig. 5. Imaginary part of the magnetic scattering amplitude.
For the non-color version we spell out the ordering of curves. In
the top and middle panel from top to bottom one has 1. “full
NLO”, 2. “full NLO+res”, 3. “full Born”. Note that the bare
amplitudes have no imaginary part in the displayed region. See
the caption of fig. 4 for more details.

emerging at NLO. In the electric sector we observe also
that the resonances matter. The impact of the variation
in the cutoff, however, is in general rather small. This is
very satisfying given that a χPT input loses its validity at
higher energies.

From studying the scattering amplitudes alone one
cannot tell easily how strongly the form factors are
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Fig. 6. Real part of the electric scattering amplitude. For
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influenced. Table 1 documents the results from the unsub-
tracted dispersion relations (12) and (13) for the multipole
moments and from the subtracted dispersion relations (10)
for the radii (6), (7) using the central values of hA and b10.
In general one observes that the Born terms alone are in-
sufficient to produce reasonable results. The inclusion of
the NLO term and/or the decuplet-resonance exchange
improves the picture significantly —signs and orders of
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Fig. 7. Imaginary part of the electric scattering amplitude.
See the caption of fig. 4 for more details.

magnitude come out correctly. Interestingly even the un-
subtracted dispersion relations produce quite reasonable
results. In particular in the electric sector the resonance
exchange has the potential to cancel the Born contribution
such that essentially the vanishing of the electric charge is
achieved. In most of the cases varying the cutoff provides
changes on the level of 10% at most. Thus the dispersive
representation is most sensitive to the low-energy regime.
This is an encouraging result given the χPT input and the
fact that not considered inelasticities like four-pion states
effectively come into play at around 1GeV [27].
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Table 1. Comparison to χPT [8] using hA = 2.3, b10 = 1.1 GeV−1.

Λ [GeV] Quantity Born NLO NLO+res χPT

1 GM (0) −0.438 5.55 2.58 1.98 (exp.)

2 −0.65 5.98 2.66

1 〈r2
M 〉 [GeV−2] 0.453 33.7 17.9 18.6

2 0.613 35.2 18.8

1 GE(0) −0.432 – 0.0026 0

2 −0.562 – −0.031

1 〈r2
E〉 [GeV−2] −3.13 – 0.866 0.773

2 −2.91 – 1.044

Table 2. Comparison to χPT [8] using Λ = 2 GeV, hA = 2.3
and varying the value for b10 (in units of GeV−1).

b10 Quantity NLO NLO+res χPT

0.85 GM (0) 4.47 1.15 1.98 (exp.)

1.35 7.49 4.17

0.85 〈r2
M 〉 [GeV−2] 27.4 10.9 18.6

1.35 43.1 26.7

Table 3. Comparison of the full calculation “NLO+res” to
χPT [8] using Λ = 2 GeV, b10 = 1.1 GeV−1 and varying the
value for hA.

Quantity hA = 2.2 hA = 2.4 χPT

GM (0) 2.94 2.36 1.98 (exp.)

〈r2
M 〉 [GeV−2] 20.2 17.3 18.6

GE(0) −0.076 0.016 0

〈r2
E〉 [GeV−2] 0.708 1.40 0.773

After having convinced ourselves that the variation
of the cutoff produces only moderate changes we keep
Λ = 2GeV fixed and explore the impact of variations
of the other two input parameters. In table 2 we explore
the changes of the low-energy quantities if the value of
b10 is varied according to (43). Since the electric sector is
independent of b10 we restrict ourselves to the magnetic
quantities. The conclusions to be drawn from inspecting
table 2 are: One needs the decuplet, only then one obtains
reasonable values for the magnetic radius. Interestingly
even the unsubtracted dispersion relation works not too
badly. However, the uncertainty related to b10 is sizable.
Results change by a factor of 2 or more. Clearly a much
better knowledge of b10 is mandatory to improve on the
predictions in the magnetic sector.

Table 3 displays the consequences of the variation in
hA according to (41). In the magnetic sector the changes
caused by variations in hA are moderate. Thus once one
has achieved a better handle on b10, then satisfying pre-
dictive power for the magnetic sector can be achieved. In

Table 4. Comparison to χPT [8] using Λ = 2 GeV, hA = 2.22,
b10 = 1.06 GeV−1.

Quantity Born NLO NLO+res χPT

GM (0) −0.648 5.74 2.65 1.98 (exp.)

〈r2
M 〉 [GeV−2] 0.613 34.0 18.7 18.6

GE(0) −0.562 – −0.068 0

〈r2
E〉 [GeV−2] −2.907 – 0.774 0.773

other words, a measurement of the magnetic transition ra-
dius, e.g. at FAIR, would pin down b10 and drastically de-
crease the uncertainties of the low-energy magnetic tran-
sition form factor.

The electric sector is independent of b10. Table 3 shows
that for reasonable values of hA the value of GE(0) can
even be fine-tuned to zero. The smallness of the electric
radius as predicted in [8] is qualitatively reproduced.

Obviously by just tuning the parameters in reason-
able ranges all electric and magnetic low-energy quanti-
ties can be reproduced —not all at the same time, but
one would not expect the unsubtracted dispersion rela-
tions to hold exactly. To illustrate this further we tune
hA and b10 such that the electric and magnetic radii are
essentially reproduced. The results are shown in table 4.
In particular we needed only a little change in hA to fine-
tune the comparatively rather small electric radius. The
point here is that the Born and resonance exchange con-
tributions nearly cancel each other as can be seen from
the comparison of the pure Born and the complete result
for the electric radius in both tables 1 and 4. We note in
passing that this is qualitatively in line with the large-Nc

considerations discussed in appendix A.
We will not explore at all the impact of a variation

of the other input on our calculations. The parameters F
and D are better constrained than hA. Given our quite
sizable uncertainties there is no point in exploring in this
first paper the consequences from the differences in the
pion phase shift as provided in [22] or [21], respectively.
For the results we have utilized the phase shift from [22].
The same remark applies to the differences between the
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Fig. 8. The electric transition form factor obtained from the
subtracted dispersion relation (10). The curve labeled by “ra-
dius adjust.” is obtained with the parameter values of table 4.
The label “small/large hA, cutoff” refers to the lower/upper
value of the range (41) and to Λ = 1/2 GeV. See main text for
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curves. In the space-like region one has from top to bottom the
same ordering as in the legend.

pion form factor and the Omnès function at larger en-
ergies [23]. All these uncertainties can be explored if the
parameters b10 and hA are better under control and/or if a
χPT calculation for the hyperon-pion amplitudes beyond
NLO is used.

We use the subtracted dispersion relations (10) to de-
termine the form factors in the region q2 < (mΣ − mΛ)2.
The electric transition form factor is shown in fig. 8. By
varying hA in the range (41) and the cutoff Λ between 1
and 2 GeV we created a family of curves. In fig. 8 we
show the respective highest and lowest curve. In addi-
tion we show the curve determined with the parameter
values of table 4, which have been adjusted to the cen-
tral value of the electric radius as obtained in [8]. The
main conclusion from fig. 8 is that the electric transition
form factor remains quite small over a large range of q2.
This is somewhat different from the result of [8] where a
larger curvature and therefore a larger variation with q2

has been found. Note, however, that this curvature is not
obtained from pure χPT but from introducing an addi-
tional Lagrangian for vector mesons into the framework.
Naturally this is associated with some model uncertainties
that are hard to quantify. In our approach the ρ-meson —
the only relevant vector meson in the isovector channel—
is included by dispersion theory. On the other hand, given
the restriction of our χPT input to NLO, we do not want
to claim that we have our uncertainties fully under con-
trol. But the results from tables 1–4 are encouraging.

The magnetic transition form factor is presented in
fig. 9. Concerning the variation in hA and Λ we show
again only the curves that encompass the whole respec-
tive family of curves. Obviously the value for b10 has the
largest impact on the magnetic transition form factor. A
better knowledge of b10 would significantly decrease the
uncertainty.
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Fig. 9. The magnetic transition form factor obtained from the
subtracted dispersion relations (10). The label “sm./la. hA”
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the range (43). The label “sm./la. cut.” refers to Λ = 1/2GeV.
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4 Further discussion, summary and outlook

It is worth to compare a direct χPT calculation to our
framework, which combines dispersion theory with purely
hadronic χPT. A relativistic χPT calculation up to (in-
cluding) order Q4, i.e. a full one-loop calculation, has been
presented in [8,40]. Our dispersive approach includes auto-
matically all the χPT one-loop diagrams where the virtual
photon couples to the pion. However, it does not include
the loop diagrams where the photon couples to kaons or
baryons. On the other hand, from the point of view of a
dispersive representation the contribution of the diagrams
with the coupling of the photon to kaons or baryons is
suppressed at low energies, in particular for a subtracted
dispersion relation. Thus, such diagrams might contribute
to the absolute size of a form factor, but not much to the
energy variation of the form factor. Therefore we expect
that using the experimental values for the form factors at
the photon point but extracting radii and general shape
from the (subtracted) dispersive representation should ef-
fectively include the dominant physics contained in a one-
loop χPT calculation. Dispersion theory goes even beyond
one-loop by including pion rescattering to all orders. Thus
the dynamical effects of the ρ-meson are automatically in-
cluded, not only in a static approximation via low-energy
constants or by adding a vector-meson lagrangian to χPT,
which induced to some extent a model dependence. Of
course, one future improvement of the present formalism
could be to include the kaon-antikaon inelasticity and ex-
plore its impact on the shape of the form factors. Strictly
speaking one should also include on the same footing the
four-pion inelasticity, but maybe the corresponding three-
loop diagrams are less important.

There is a second aspect where our combined frame-
work might be superior to a pure χPT calculation. There
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the decuplet states are not included as active degrees of
freedom since they are not degenerate with the octet in
the chiral limit. The decuplet appears indirectly in a static
version by influencing the low-energy constants. Our re-
sults suggest that the explicit inclusion of dynamical decu-
plet states might be important, qualitatively in line with,
e.g., [6, 18, 19, 37]. Of course, the inclusion of a dynami-
cal decuplet can also be performed in a χPT framework,
but the whole development is in an infant stage. Not
even the full NLO lagrangian for relativistic three-flavor
octet+decuplet baryon χPT has been formulated up to
now. This deficiency will also concern our framework when
we will apply it to the decuplet-to-octet transition form
factors. For the present work, where the external states are
octet hyperons, the inclusion of the decuplet intermediate
states was very straightforward. Since the pionic loops are
generated by the dispersive representation and not by an
explicit loop calculation, there is no ambiguity related to
the renormalization of the loop diagrams [6,8, 17–19,37].

For our hadronic input for the pion-hyperon scatter-
ing amplitudes we have used the language of three-flavor
χPT. Conceptually this seems to be at odds with our dis-
persive setup where we include only the pions as interme-
diate states and not also the kaons. As already pointed out
the influence of the kaon inelasticity starts at rather high
energies, (2mK)2 ≈ 1GeV2. In principle, we could have
formulated our whole framework in a language with two
light flavors. There, pions would couple to the isosinglet Λ
and the isotriplet Σ and Σ∗ states. Without the notion of
a three-flavor chiral limit the mass difference between Λ
and Σ would not vanish, but one can assume nonetheless
that the mass difference is a small quantity —similar in
spirit to the assumption that the mass difference between
Σ and Σ∗ constitutes another small quantity, which does
not vanish in the chiral limit. In such a framework the
coupling constants for Σ∗-Λ-π and Σ∗-Σ-π would be in-
dependent from each other. But both can be determined
from the Σ∗ partial decay widths. This is what we essen-
tially did anyway. In this framework with two light flavors
those coupling constants would be independent of the Δ-
N -π coupling constant. For our numerics we did not use
such a three-flavor relation. The only input that we used
from a three-flavor analysis are the values for D and F , i.e.
the coupling constants for Σ-Λ-π and Σ-Σ-π, respectively.
In a two-flavor framework these constants would not be re-
lated to gA, i.e. to the N -N -π coupling constant. In our
present analysis we use D and F just as input. Of course,
their sizes are determined from a three-flavor formalism,
but the flavor breaking is relatively well explored here.
In summary, to a large extent our whole approach can be
formulated in a language with two light flavors. Conceptu-
ally this connects our present work to the electromagnetic
form factors of the charmed Λc, Σc, Σ∗

c states4 [1]. We
do not dwell on this connection any further in the present
work.

Let us now summarize our results: In the electric sec-
tor we have found that the inclusion of the decuplet Σ∗

4 We thank M.F.M. Lutz for pointing out this interesting
cross-relation.

resonances is crucial. This leads to a large cancelation be-
tween Σ and Σ∗ exchange such that even the unsubtracted
dispersion relation for the electric transition form factor
is reasonably satisfied. The cancelation leads to a small
electric transition radius, in qualitative agreement with
the direct three-flavor χPT calculation [8]. Even quanti-
tative agreement can be achieved by a fine-tuning of the
coupling constant that governs the decay width of the Σ∗

resonances.
The inclusion of the decuplet for the calculation of

the electric radii has also been discussed in [50] in the
heavy-baryon limit of χPT. There the decuplet did not
contribute to the Σ-Λ transition radius. Obviously this is
different in our relativistic set-up.

As a further consequence of the cancelation between
Σ and Σ∗ exchange our electric transition form factor re-
mains small throughout the whole low-energy region. This
does not fully agree with the results of [8] obtained in
a framework where three-flavor χPT is augmented with
explicit vector-meson fields in the antisymmetric tensor
representation. We would like to stress again that the in-
clusion of vector mesons in χPT is not an entirely model-
independent procedure —one of the reasons why we re-
place this part of the framework by dispersion theory.
Clearly it remains to be seen how the electric transition
form factor is modified, if the hadronic input is pushed to
higher orders and/or the kaon inelasticity is included.

The magnetic sector is sensitive to a low-energy con-
stant of NLO χPT. Without the inclusion of such a term
there remains an ambiguity how to properly treat the spin-
3/2 Σ∗ resonances in a relativistic framework (in the elec-
tric sector this ambiguity is relegated to NNLO). With a
reasonable size estimate for this low-energy constant we
can reproduce the three-flavor χPT prediction [8] for the
magnetic transition radius. In turn by a measurement of
the magnetic transition radius this low-energy constant
could be narrowed down, leading to a significant increase
of predictive power for the low-energy shape of the mag-
netic transition form factor. Such a measurement could
be feasible at FAIR by determining the differential de-
cay width of Σ0 → Λe+e−. In general, this Dalitz de-
cay depends on two variables, for instance the dilepton
mass and the angle between Λ and electron in the dilep-
ton rest frame [12]. However, if the electric transition ra-
dius is small —as suggested by our results and the ones
from [8]—, then a decay width that is just one-fold differ-
ential in the dilepton invariant mass would be sufficient
to extract the magnetic transition radius. A back-to-the-
envelope estimate shows that the effort to extract a mag-
netic transition radius from Σ0 → Λe+e− is comparable
to the extraction of the slope of the pion transition form
factor from π0 → γ e+e−; see [51] for a recent experiment
and [52] for a recent dispersive calculation.

The framework presented here can be extended to all
isovector form factors and transition form factors of the
spin-1/2 and spin-3/2 baryon ground states. For the octet
and decuplet states one might use the very same three-
flavor chiral input for the baryonic scattering amplitudes.
This might provide some additional cross-relations be-
tween observables that we have not utilized so far with our
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focus on just the one transition from Σ0 to Λ. On the other
hand, if one wants to be more conservative, one might
just use isospin symmetry and a two-flavor chiral input
separately for each strangeness sector. The complemen-
tary experimental program would be a dedicated study
of the differential distributions of hyperon Dalitz decays
Y → Y ′ e+e−. With data input and dispersion theory the
experimentally hardly accessible space-like region can be
addressed, which in turn could provide a new angle on the
structure of baryons.

We thank K. Schönning for initiating this work by her ques-
tions about hyperon form factors. We also thank O. Junker for
cross-checking some of our results, B. Kubis and P. Salabura
for valuable discussions and encouragement and J.R. Pelaez,
J. Ruiz de Elvira and G. Colangelo, P. Stoffer for providing
us with their respective pion phase shifts. While finishing this
work we became aware of the conference proceedings [53]. Here
the peripheral structure of hyperons is addressed by combin-
ing dispersion theory with leading-order chiral perturbation
theory. It will be interesting to compare our results once the
details of [53] are published.

Additional remark: Meanwhile an extended version of [53]
appeared as a preprint [54]. All hyperons are addressed
there while we focus here on the transition of Σ0 to Λ.
Leading-order chiral perturbation theory (with the in-
clusion of the decuplet) is used in [54] while we include
the next-to-leading-order terms. In addition we include
pion rescattering for the hyperon-pion scattering ampli-
tudes via (26). Essentially the approach of [54] is recovered
from (26) by first dropping the terms with K and then
replacing the polynomial by the complete leading-order
expression for the scattering amplitude that contains the
polynomial and the left-hand-cut parts.

Appendix A. Cross-check with Δ exchange
and large-Nc relations

As a cross-check of the results (46), (54) we have also cal-
culated the nucleon- and Delta-exchange contributions to
pn̄ → π+π0. The nucleon exchange is obtained from (46)
by replacing all the hyperon masses by the nucleon mass
mN and by

DF√
3

→ −
√

2 g2
A

4
. (A.1)

The Delta exchange is obtained from (54) by replacing the
hyperon masses by mN , the Σ∗ mass by mΔ and

−h2
A√
3
→ 2

√
2 h2

A

3
. (A.2)

In the large-Nc limit the leading-order contributions to
the electric amplitude from nucleon exchange and Delta
exchange should cancel each other. The nucleon-exchange
contribution to the magnetic amplitude should be twice
the one from Delta exchange (here with same sign); see,
e.g., the corresponding discussion in [55] and references
therein.

This is indeed what one finds. We first note that the
nucleon exchange does not contain the structure v̄nup.
Therefore one obtains TN

M = TN
E . For both the nucleon

and the Delta exchange the pole terms dominate the poly-
nomial terms in the large-Nc limit. This is satisfying as the
polynomial terms for the Delta exchange depend on the
spurious spin-1/2 modes. In the large-Nc limit the masses
of nucleon and Delta are degenerate. Keeping only the
pole terms yields

MN = −
√

2 g2
A

2F 2
π

v̄nγμkμup m2
N

(
1

t − m2
N

+
1

u − m2
N

)

(A.3)
and

MΔ = −
√

2 h2
A

4 · 9F 2
π

×
(

v̄nup 3 (s − 2m2
π)mN

(
1

t − m2
N

− 1
u − m2

N

)

+ v̄nγμkμup 2m2
N

(
1

t − m2
N

+
1

u − m2
N

))
.

(A.4)

Recalling the large-Nc relation hA = 3gA/
√

2 and the fact
that the v̄nup term does not contribute to the magnetic
amplitude, we observe that indeed TΔ

M = TN
M/2.

The calculation of the electric amplitude is slightly
more complicated. We will show in the following that for
the Delta exchange the v̄nup term contributes (−3) times
the other term. In this way the Delta contribution to the
electric amplitude is given by −3 + 1 = −2 times the
v̄nγμkμup structure. This in turn leads to TΔ

E = −TN
E as

it should be.
We address the ratio of the two terms in (A.4) for the

electric case. We obtain
v̄nup 3 (s − 2m2

π)mN (u − t)
v̄nγ3k3up 2m2

N (u + t − 2m2
N )

≈ mN 3 (s − 2m2
π)mN (u − t)

pz (−2pc.m. cos θ) 2m2
N (u + t − 2m2

N )

=
3 (s − 2m2

π)
u + t − 2m2

N

= −3 (A.5)

as claimed.

Appendix B. Cut structure of resonance pole
terms

The t- and u-channel pole terms cause left-hand cuts in
the Λ̄Σ → 2π amplitudes. It is worth to figure out in par-
ticular the cut structure of the resonance-exchange terms
since a meaningful matching of these terms to χPT re-
quires to avoid as much as possible the cuts and the ef-
fects/structures caused by them. The starting points of
the cuts are given by solutions of the equation(

−1
2

s +
1
2

m2
Σ +

1
2

m2
Λ + m2

π − m2
Σ∗

)2

− 4 p2
z p2

c.m. = 0.

(B.1)
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Analytical formulae could be provided for these starting
points of the cuts (solutions of a quadratic equation in
s), but we will not present them here. Instead we present
the numerical values for points that are of relevance for
the resonance-exchange contributions to the Λ̄Σ → 2π
amplitudes. The (pseudo-)thresholds are given by

s1 = (mΣ − mΛ)2 ≈ 0.00592GeV2,

s2 = (2mπ)2 ≈ 0.0779GeV2,

s3 = (mΣ + mΛ)2 ≈ 5.33GeV2. (B.2)

There are two cuts. One ranges from −∞ to sc1 ≈
−0.105GeV2, the other from sc2 ≈ −0.00305GeV2 to
zero. The magnetic amplitude has cusps at sc1, sc2 and
zero. (The electric amplitude diverges at sc1 and sc2.) The
very small cut from sc2 to zero has (only) an impact on
the region around s = 0. Thus a matching to χPT should
be performed for small values of s but for |s| � |sc2|.
One possibility is a matching at the two-pion threshold
s2 = (2mπ)2. A second possible choice is a matching for
negative s with sc1 � s � sc2. For the latter case a rea-
sonable choice might be to use the threshold value for t of
the reaction Σ π → Λπ. The threshold of this reaction is
at mΣ +mπ and there the value of the momentum transfer
from the pions to the baryons is given by

st0 = −mπ (m2
Σ − m2

Λ)/(mΣ + mπ) ≈ −0.0186GeV2,
(B.3)

which lies comfortably between sc1 and sc2.
A third possibility is a theoretical calculation with an

appropriate low-energy limit. In the limit mπ → 0 the
small cut between sc2 and zero disappears. Only one cut
is left that ranges from −∞ to

sc = −m4
Σ∗ − (m2

Σ + m2
Λ)m2

Σ∗ + m2
Σ m2

Λ

m2
Σ∗

. (B.4)

Thus in this limit one can perform a matching at s =
0. If one puts mπ to zero it makes sense to also neglect
the mass difference between mΣ and mΛ. Otherwise the
two pseudo-thresholds at s1 and s2 would change their
ordering. After this double limit mπ → 0 and mΛ → mΣ

one can evaluate the resonance-pole contribution to the
magnetic amplitude for s = 0. One obtains

KM
res,low := lim

s→0
lim

mΛ→mΣ

lim
mπ→0

KM
res(s)

=
h2

A

24
√

3F 2
π

(−m2
Σ∗ + 4mΣ∗mΣ − m2

Σ) (mΣ∗ + mΣ)
m2

Σ∗ (mΣ∗ − mΣ)
.

(B.5)

Matching is then performed according to (29).
A detailed inspection of the magnetic amplitude (not

displayed here) shows that the “distortion” of the curve
caused by the small cut is of minor importance at st0 and
at s2. In the vicinity of s1 there are no cuts, but there
is already a large slope. Thus a matching to χPT at s1

would not be a good choice. Numerically the ratio be-
tween the amplitudes at s2 and at st0 is about 0.78. The
ratio between the magnetic amplitude at st0 and (B.5) is

about 0.97, i.e. very close to 1, demonstrating agreement
between the idea to match at the physically reasonable
point st0 and the theoretical low-energy calculation (B.5).
For our numerical results we will use the analytical ex-
pression (B.5). Note, however, that in view of the large
uncertainties in b10 a matching at the two-pion threshold
would also be a reasonable choice.
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