Skip to main content
Log in

Hadronic molecular states from the \(K\bar{K}^{\ast}\) interaction

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract.

In this work, the \(K\bar{K}^{\ast}\) interaction is studied in a quasipotential Bethe-Salpeter equation approach combined with the one-boson-exchange model. With the help of the hidden-gauge Lagrangian, the exchanges of pseudoscalar mesons (\(\pi\) and \(\eta\)) and vector mesons (\(\rho\), \(\omega\) and \(\phi\)) are considered to describe the \(K\bar{K}^{\ast}\) interaction. Besides the direct vector-meson exchange which can be related to the Weinberg-Tomozawa term, pseudoscalar-meson exchanges also play important roles in the mechanism of the \(K\bar{K}^{\ast}\) interaction. The poles of scattering amplitude are searched to find the molecular states produced from the \(K\bar{K}^{\ast}\) interaction. In the case of quantum number \(I^{G}(J^{PC}) = 0^{+}(1^{++})\), a pole is found with a reasonable cutoff, which can be related to the \(f_{1}(1285)\) in experiment. Another bound state with \(0^{-}(1^{+-})\) is also produced from the \(K\bar{K}^{\ast}\) interaction, which can be related to the \(h_{1}(1380)\). In the isovector sector, the interaction is much weaker and a bound state with \(1^{+}(1^{+})\) relevant to the \(b_{1}(1235)\) is produced but at a larger cutoff. Our results suggest that in the hadronic molecular state picture the \(f_{1}(1285)\) and \(b_{1}(1235)\) are the strange partners of the X(3872) and \(Z_{c}(3900)\), respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Z.F. Sun, J. He, X. Liu, Z.G. Luo, S.L. Zhu, Phys. Rev. D 84, 054002 (2011)

    Article  ADS  Google Scholar 

  2. Z.F. Sun, Z.G. Luo, J. He, X. Liu, S.L. Zhu, Chin. Phys. C 36, 194 (2012)

    Article  Google Scholar 

  3. Z.G. Wang, T. Huang, Eur. Phys. J. C 74, 2891 (2014)

    Article  ADS  Google Scholar 

  4. J. He, Phys. Rev. D 92, 034004 (2015)

    Article  ADS  Google Scholar 

  5. Particle Data Group Collaboration (K.A. Olive et al.), Chin. Phys. C 38, 090001 (2014)

    Article  Google Scholar 

  6. L. Roca, E. Oset, J. Singh, Phys. Rev. D 72, 014002 (2005)

    Article  ADS  Google Scholar 

  7. M.F.M. Lutz, E.E. Kolomeitsev, Nucl. Phys. A 730, 392 (2004)

    Article  ADS  Google Scholar 

  8. F. Aceti, J.M. Dias, E. Oset, Eur. Phys. J. A 51, 48 (2015)

    Article  ADS  Google Scholar 

  9. L.S. Geng, X.L. Ren, Y. Zhou, H.X. Chen, E. Oset, Phys. Rev. D 92, 014029 (2015)

    Article  ADS  Google Scholar 

  10. Y. Zhou, X.L. Ren, H.X. Chen, L.S. Geng, Phys. Rev. D 90, 014020 (2014)

    Article  ADS  Google Scholar 

  11. F. Aceti, M. Bayar, E. Oset, A. Martinez Torres, K.P. Khemchandani, J.M. Dias, F.S. Navarra, M. Nielsen, Phys. Rev. D 90, 016003 (2014)

    Article  ADS  Google Scholar 

  12. M.C. Birse, Z. Phys. A 355, 231 (1996)

    ADS  Google Scholar 

  13. H.X. Chen, W. Chen, X. Liu, S.L. Zhu, Phys. Rep. 639, 1 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  14. J. He, X. Liu, Eur. Phys. J. C 72, 1986 (2012)

    Article  ADS  Google Scholar 

  15. J. He, D.Y. Chen, X. Liu, Eur. Phys. J. C 72, 2121 (2012)

    Article  ADS  Google Scholar 

  16. J. He, P.L. Lü, Nucl. Phys. A 919, 1 (2013)

    Article  ADS  Google Scholar 

  17. J. He, P.L. Lü, Chin. Phys. C 40, 043101 (2016)

    Article  ADS  Google Scholar 

  18. J. He, Phys. Rev. C 91, 018201 (2015)

    Article  ADS  Google Scholar 

  19. M. Bando, T. Kugo, S. Uehara, K. Yamawaki, T. Yanagida, Phys. Rev. Lett. 54, 1215 (1985)

    Article  ADS  Google Scholar 

  20. M. Bando, T. Kugo, K. Yamawaki, Phys. Rep. 164, 217 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  21. H. Nagahiro, L. Roca, A. Hosaka, E. Oset, Phys. Rev. D 79, 014015 (2009)

    Article  ADS  Google Scholar 

  22. F. Aceti, M. Bayar, J.M. Dias, E. Oset, Eur. Phys. J. A 50, 103 (2014)

    Article  ADS  Google Scholar 

  23. J. He, Phys. Rev. D 90, 076008 (2014)

    Article  ADS  Google Scholar 

  24. R. Molina, E. Oset, Phys. Rev. D 80, 114013 (2009)

    Article  ADS  Google Scholar 

  25. F. Gross, A. Stadler, Phys. Rev. C 78, 014005 (2008)

    Article  ADS  Google Scholar 

  26. F. Gross, A. Stadler, Phys. Rev. C 82, 034004 (2010)

    Article  ADS  Google Scholar 

  27. J. He, Phys. Lett. B 753, 547 (2016)

    Article  ADS  Google Scholar 

  28. J. Gasser, H. Leutwyler, Nucl. Phys. B 250, 465 (1985)

    Article  ADS  Google Scholar 

  29. G. Ecker, J. Gasser, H. Leutwyler, A. Pich, E. de Rafael, Phys. Lett. B 223, 425 (1989)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun He.

Additional information

Communicated by H. Wittig

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lü, PL., He, J. Hadronic molecular states from the \(K\bar{K}^{\ast}\) interaction. Eur. Phys. J. A 52, 359 (2016). https://doi.org/10.1140/epja/i2016-16359-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2016-16359-7

Navigation