Skip to main content
Log in

Scaling of nuclear modification factors for hadrons and light nuclei

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract.

The number of constituent quarks (NCQ) scaling for hadrons and the number of constituent nucleons (NCN) scaling for light nuclei are proposed for nuclear modification factors (\(R_{cp}\)) of hadrons and light nuclei, respectively, according to the experimental investigations in relativistic heavy-ion collisions. Based on the coalescence mechanism the scalings are performed for pions and protons at the quark level, and for light nuclei \(d(\bar{d})\) and 3He at the nucleonic level, respectively, formed in Au+Au and Pb+Pb collisions, and a nice scaling behaviour emerges. The NCQ or NCN scaling law of \(R_{cp}\) can be, respectively, taken as a probe for the quark or nucleon coalescence mechanism for the formation of hadron or light nuclei in relativistic heavy-ion collisions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Karsch, Nucl. Phys. A 698, 199c (2002)

    Article  ADS  Google Scholar 

  2. BRAHMS Collaboration (I. Arsene et al.), Nucl. Phys. A 757, 1 (2005)

    Article  Google Scholar 

  3. PHOBOS Collaboration (B.B. Back et al.), Nucl. Phys. A 757, 28 (2005)

    Article  ADS  Google Scholar 

  4. STAR Collaboration (J. Adames et al.), Nucl. Phys. A 757, 102 (2005)

    Article  ADS  Google Scholar 

  5. PHENIX Collaboration (S.S. Adler et al.), Nucl. Phys. A 757, 184 (2005)

    Article  ADS  Google Scholar 

  6. J. Tian, J.H. Chen, Y.G. Ma, X.Z. Cai, F. Jin, G.L. Ma, S. Zhang, C. Zhong, Phys. Rev. C 79, 067901 (2009)

    Article  ADS  Google Scholar 

  7. N. Yu, F. Liu, K. Wu, Phys. Rev. C 90, 024913 (2014)

    Article  ADS  Google Scholar 

  8. G.Y. Shao, M. Colonna, M. Di Toro, Y. Liu, B. Liu, Nucl. Sci. Tech. 24, 050523 (2013)

    Google Scholar 

  9. F.M. Liu, Nucl. Sci. Tech. 24, 050524 (2013)

    Google Scholar 

  10. Y. Hu, Z. Su, W. Zhang, Nucl. Sci. Tech. 24, 050522 (2013)

    Google Scholar 

  11. H. Wang, Z. Hou, X. Sun, Nucl. Sci. Tech. 25, 040502 (2014)

    Google Scholar 

  12. C.M. Ko, L.W. Chen, V. Greco, F. Li, Z.W. Lin, S. Plumari, T. Song, J. Xu, Nucl. Sci. Tech. 24, 050525 (2013)

    Google Scholar 

  13. C.M. Ko, F. Li, Nucl. Sci. Tech. 27, 140 (2016)

    Article  Google Scholar 

  14. Y.J. Ye, J.H. Chen, Y.G. Ma, S. Zhang, C. Zhong, Phys. Rev. C 93, 044904 (2016)

    Article  ADS  Google Scholar 

  15. Y.F. Xu, Y.J. Ye, J.H. Chen, Y.G. Ma, S. Zhang, C. Zhong, Nucl. Sci. Tech. 27, 87 (2016)

    Article  Google Scholar 

  16. for the STAR Collaboration (B. Mohanty), J. Phys. G 38, 124023 (2011)

    Article  ADS  Google Scholar 

  17. STAR Collaboration (B.I. Abelev et al.), Phys. Lett. B 655, 104 (2007)

    Article  ADS  Google Scholar 

  18. G. Agakishiev et al., Phys. Rev. Lett. 108, 072301 (2012)

    Article  ADS  Google Scholar 

  19. STAR Collaboration (B.I. Abelev et al.), Science 328, 58 (2010)

    Article  Google Scholar 

  20. STAR Collaboration (H. Agakishiev et al.), Nature 473, 353 (2011)

    Article  ADS  Google Scholar 

  21. STAR Collaboration (J. Adams et al.), Phys. Rev. Lett. 92, 052302 (2004)

    Article  Google Scholar 

  22. STAR Collaboration (B.I. Abelev), Phys. Rev. C 79, 034909 (2009)

    Article  Google Scholar 

  23. P. Braun-Munzinger, J. Stachel, Nature 448, 302 (2007)

    Article  ADS  Google Scholar 

  24. STAR Collaboration (J. Adams et al.), Phys. Rev. Lett. 91, 072304 (2003)

    Article  Google Scholar 

  25. STAR Collaboration (J. Adams et al.), Phys. Rev. Lett. 91, 172302 (2003)

    Article  Google Scholar 

  26. J.D. Bjorken, FERMILAB-PUB-82-59-THY and Erratum (unpublished)

  27. X.N. Wang, M. Gyulassy, Phys. Rev. Lett. 68, 1480 (1992)

    Article  ADS  Google Scholar 

  28. E. Wang, X.N. Wang, Phys. Rev. Lett. 87, 142301 (2001)

    Article  ADS  Google Scholar 

  29. G.L. Ma, Y.G. Ma, S. Zhang et al., Phys. Lett. B 647, 122 (2007)

    Article  ADS  Google Scholar 

  30. M. Nie, G. Ma, Nucl. Tech. 37, 100519 (2014) (in Chinese)

    Google Scholar 

  31. J.W. Cronin et al., Phys. Rev. Lett. 31, 1426 (1973)

    Article  ADS  Google Scholar 

  32. J.W. Cronin et al., Phys. Rev. D 11, 3105 (1975)

    Article  ADS  Google Scholar 

  33. STAR Collaboration (S.P. Horvat et al.), J. Phys.: Conf. Ser. 446, 012017 (2013)

    ADS  Google Scholar 

  34. M. Lv, Y.G. Ma, G.Q. Zhang, J.H. Chen, D.Q. Fang, Phys. Lett. B 733, 105 (2014)

    Article  ADS  Google Scholar 

  35. M. Lv, Y.G. Ma, G.Q. Zhang, J.H. Chen, D.Q. Fang, Nucl. Tech. 37, 100517 (2014) (in Chinese)

    Google Scholar 

  36. S.A. Voloshin, Nucl. Phys. A 715, 379c (2003)

    Article  ADS  Google Scholar 

  37. R. Scheibl, U. Heinz, Phys. Rev. C 59, 1585 (1999)

    Article  ADS  Google Scholar 

  38. STAR Collaboration (L. Adamczyk et al.), Phys. Rev. C 93, 021903(R) (2016)

    Article  ADS  Google Scholar 

  39. ALICE Collaboration (B. Abelev et al.), Phys. Rev. C 88, 044909 (2013)

    Article  ADS  Google Scholar 

  40. ALICE Collaboration (B. Abelev et al.), Phys. Lett. B 720, 52 (2013)

    Article  ADS  Google Scholar 

  41. STAR Collaboration (B.I. Abelev et al.), Phys. Rev. Lett. 97, 152301 (2006)

    Article  Google Scholar 

  42. ALICE Collaboration (B. Abelev et al.), Phys. Rev. Lett. 109, 252301 (2012)

    Article  ADS  Google Scholar 

  43. ALICE Collaboration (B. Abelev et al.), Phys. Rev. C 88, 044910 (2013)

    Article  ADS  Google Scholar 

  44. L. Xue, Y.G. Ma, J.H. Chen, S. Zhang, Phys. Rev. C 85, 064912 (2012)

    Article  ADS  Google Scholar 

  45. N. Shah, Y.G. Ma, J.H. Chen, S. Zhang, Phys. Lett. B 754, 6 (2016)

    Article  ADS  Google Scholar 

  46. T.Z. Yan, Y.G. Ma, Z.Z. Cai et al., Phys. Lett. B 638, 50 (2006)

    Article  ADS  Google Scholar 

  47. Y.G. Ma et al., Nucl. Phys. A 787, 611c (2007)

    Article  ADS  Google Scholar 

  48. STAR Collaboration (L. Adamczyk et al.), Phys. Rev. C 94, 034908 (2016)

    Article  ADS  Google Scholar 

  49. Yongseok Oh, Che Ming Ko, Phys. Rev. C 76, 054910 (2007)

    Article  Google Scholar 

  50. Lilin Zhu, Che Ming Ko, Xuejiao Yin, Phys. Rev. C 92, 064911 (2015)

    Article  ADS  Google Scholar 

  51. NA49 Collaboration (T. Anticic et al.), Phys. Rev. C 69, 024902 (2004)

    Article  Google Scholar 

  52. PHENIX Collaboration (S.S. Adler et al.), Phys. Rev. C 69, 034909 (2004)

    Article  Google Scholar 

  53. PHENIX Collaboration (S.S. Adler et al.), Phys. Rev. Lett. 94, 122302 (2005)

    Article  Google Scholar 

  54. ALICE Collaboration (J. Adam et al.), Phys. Rev. C 93, 024917 (2016)

    Article  ADS  Google Scholar 

  55. J. Wang, Y.G. Ma, G.Q. Zhang, W.Q. Shen, Phys. Rev. C 90, 054601 (2014)

    Article  ADS  Google Scholar 

  56. J. Wang, Y.G. Ma, G.Q. Zhang, W.Q. Shen, Nucl. Sci. Tech. 24, 030501 (2013)

    Google Scholar 

  57. STAR Collaboration (L. Adamczyk et al.), Nature 527, 345 (2015)

    Article  ADS  Google Scholar 

  58. Z.Q. Zhang, Y.G. Ma, Nucl. Sci. Tech. 27, 152 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. G. Ma.

Additional information

Communicated by Xin-Niang Wang

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, C.S., Ma, Y.G. & Zhang, S. Scaling of nuclear modification factors for hadrons and light nuclei. Eur. Phys. J. A 52, 354 (2016). https://doi.org/10.1140/epja/i2016-16354-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2016-16354-0

Navigation