Skip to main content
Log in

Ultracold neutron detection with 6Li-doped glass scintillators

NANOSC: A fast ultracold neutron detector for the nEDM experiment at the Paul Scherrer Institute

  • Special Article - Tools for Experiment and Theory
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract.

This paper summarizes the results from measurements aiming to characterize ultracold neutron detection with 6Li-doped glass scintillators. Single GS10 or GS20 scintillators, with a thickness of 100-200μm, fulfill the ultracold neutron detection requirements with an acceptable neutron-gamma discrimination. This discrimination is clearly improved with a stack of two scintillators: a 6Li-depleted glass bonded to a 6Li-enriched glass. The technique of optical contact bonding is used between the two glasses in order to eliminate the need for optical glue or grease between them. Relative to a 3He Strelkov gas detector, the scintillator’s detection efficiency is lower for UCN energies close to the scintillator’s Fermi potential (85-100 neV), but becomes larger at higher UCN energies. Coupled to a digital data acquisition system, counting rates up to a few 105 counts/s can be handled. A detector based on such a scintillator stack arrangement was built and has been used in the neutron electric dipole moment experiment at the Paul Scherrer Institute since 2010. Its response for routine runs of the neutron electric dipole moment experiment is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Lauss, Hyperfine Interact. 21, 211 (2012)

    Google Scholar 

  2. B. Lauss, Phys. Proc. 51, 98 (2013)

    Article  ADS  Google Scholar 

  3. O. Zimmer et al., Phys. Rev. Lett. 107, 134801 (2011)

    Article  ADS  Google Scholar 

  4. U. Trinks et al., Nucl. Instrum. Methods Phys. Res. A 440, 666 (2000)

    Article  ADS  Google Scholar 

  5. Y. Masuda et al., Phys. Rev. Lett. 89, 284801 (2002)

    Article  ADS  Google Scholar 

  6. A. Saunders et al., Phys. Lett. B 593, 55 (2004)

    Article  ADS  Google Scholar 

  7. A.P. Serebrov et al., Nucl. Instrum. Methods Phys. Res. A 611, 276 (2009)

    Article  ADS  Google Scholar 

  8. C.L. Morris et al., Nucl. Instrum. Methods Phys. Res. A 599, 248 (2009)

    Article  ADS  Google Scholar 

  9. M. Klein, Ch. Schmidt, Nucl. Instrum. Methods Phys. Res. A 628, 9 (2011)

    Article  ADS  Google Scholar 

  10. D.J. Salvat et al., Nucl. Instrum. Methods Phys. Res. A 691, 109 (2012)

    Article  ADS  Google Scholar 

  11. C.A. Baker et al., Nucl. Instrum. Methods Phys. Res. A 487, 511 (2002)

    Article  ADS  Google Scholar 

  12. C.A. Baker et al., Nucl. Instrum. Methods Phys. Res. A 501, 517 (2003)

    Article  ADS  Google Scholar 

  13. M. Lasakov et al., J. Res. Natl. Inst. Stand. Technol. 110, 289 (2005)

    Article  Google Scholar 

  14. Th. Lauer et al., Eur. Phys. J. A 47, 150 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  15. G. Ban et al., J. Res. Natl. Inst. Stand. Technol. 110, 283 (2005)

    Article  Google Scholar 

  16. G. Ban et al., Nucl. Instrum. Methods Phys. Res. A 611, 280 (2009)

    Article  ADS  Google Scholar 

  17. Y. Oshima et al., Prog. Nucl. Sci. Technol. 1, 296 (2011)

    Article  Google Scholar 

  18. L. Göltl et al., Eur. Phys. J. A 49, 9 (2013)

    Article  ADS  Google Scholar 

  19. B. Jamieson et al., Nucl. Instrum. Methods Phys. Res. A 790, 6 (2015)

    Article  ADS  Google Scholar 

  20. J. Jakubek et al., Nucl. Instrum. Methods Phys. Res. A 600, 651 (2009)

    Article  ADS  Google Scholar 

  21. S. Kawasaki et al., Nucl. Instrum. Methods Phys. Res. A 615, 42 (2010)

    Article  ADS  Google Scholar 

  22. S. Baessler et al., C. R. Phys. 12, 729 (2011)

    Article  ADS  Google Scholar 

  23. F. Atchison et al., Nucl. Instrum. Methods Phys. Res. A 608, 144 (2009)

    Article  ADS  Google Scholar 

  24. J.A. Dianoux, G. Lander, Neutron Data Booklet (Institut Laue Langevin, 2001)

  25. G. Rogel, PhD Thesis, University of Caen Normandy (2009)

  26. Applied Scintillation Technologies, Phosphor/Scintillator Datasheet 41, 41a and 41b

  27. Varley F. Sears, Neutron News 3, 29 (1992)

    Article  Google Scholar 

  28. C.W.E. van Eijk, Nucl. Instrum. Methods Phys. Res. A 460, 1 (2001)

    Article  ADS  Google Scholar 

  29. C.W.E. van Eijk, IEEE Trans. Nucl. Sci. 59, 2242 (2012)

    Article  ADS  Google Scholar 

  30. J.F. Ziegler, SRIM software, http://www.srim.org

  31. B. Carniol, T. Chaventré, D. Cussol, D. Etasse, C. Fontbonne, J.M. Fontbonne, J. Hommet, H. Plard, J. Poincheval, FASTER, http://faster.in2p3.fr/

  32. R. Brun, Fons Rademakers, Nucl. Instrum. Methods. Phys. Res. A 389, 81 (1997)

    Article  ADS  Google Scholar 

  33. M. Morgano et al., Nucl. Instrum. Methods Phys. Res. A 754, 46 (2014)

    Article  ADS  Google Scholar 

  34. C.A. Baker et al., Phys. Proc. 17, 159 (2011)

    Article  ADS  Google Scholar 

  35. S. Afach et al., Eur. Phys. J. A 51, 143 (2015)

    Article  ADS  Google Scholar 

  36. Hamamatsu, Photomultiplier R11187 datasheet

  37. M. Daum et al., Nucl. Instrum. Methods Phys. Res. A 675, 103 (2012)

    Article  ADS  Google Scholar 

  38. C.A. Baker et al., Nucl. Instrum. Methods Phys. Res. A 736, 184 (2014)

    Article  ADS  Google Scholar 

  39. K. Mishima, private communication

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Lefort.

Additional information

Communicated by A. Jokinen

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ban, G., Bison, G., Bodek, K. et al. Ultracold neutron detection with 6Li-doped glass scintillators. Eur. Phys. J. A 52, 326 (2016). https://doi.org/10.1140/epja/i2016-16326-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2016-16326-4

Navigation