Skip to main content
Log in

Momentum distribution of N* in nuclei

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract.

Due to its dominance in the low-energy eta-nucleon interaction, the S11 N *(1535) resonance enters as an important ingredient in the analyses of experiments aimed at finding evidence for the existence of eta-mesic nuclei. The static properties of the resonance get modified inside the nucleus and its momentum distribution is used in deciding these properties as well as the kinematics in the analyses. Here we show that given the possibility for the existence of an N *-3He quasibound state, the relative momentum distribution of an N * and 3He inside such a 4He is narrower than that of neutron-3He in 4He. Results for the N *-24Mg system are also presented. The present exploratory work could be useful in motivating searches of exotic N *-nucleus quasibound states as well as in performing analyses of eta-meson production data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.S. Bhalerao, L.C. Liu, Phys. Rev. Lett. 54, 865 (1985)

    Article  ADS  Google Scholar 

  2. H. Machner, J. Phys. G 42, 043001 (2015)

    Article  ADS  Google Scholar 

  3. B. Krusche, C. Wilkin, Prog. Part. Nucl. Phys. 80, 43 (2014)

    Article  ADS  Google Scholar 

  4. Q. Haider, L.C. Liu, Int. J. Mod. Phys. E 24, 1530009 (2015)

    Article  ADS  Google Scholar 

  5. N.G. Kelkar, K.P. Khemchandani, N.J. Upadhyay, B.K. Jain, Rep. Prog. Phys. 76, 066301 (2013)

    Article  ADS  Google Scholar 

  6. M. Pfeiffer et al., Phys. Rev. Lett. 92, 252001 (2004)

    Article  ADS  Google Scholar 

  7. G.A. Sokol, L.N. Pavlyuchenko, Phys. At. Nucl. 71, 509 (2008)

    Article  Google Scholar 

  8. S.D. Bass, Hyperfine Interact. 234, 41 (2015)

    Article  ADS  Google Scholar 

  9. S.D. Bass, P. Moskal, Acta Phys. Pol. B 47, 373 (2016)

    Article  Google Scholar 

  10. Super-FRS Collaboration (H. Fujioka et al.), Hyperfine Interact. 234, 33 (2015)

    Article  Google Scholar 

  11. W. Krzemien, P. Moskal, M. Skurzok, Acta Phys. Pol. B 46, 757 (2015)

    Article  ADS  Google Scholar 

  12. M.Skurzok, W. Krzemien, O. Rundel, P. Moskal, EPJ Web of Conferences 117, 02005 (2016)

    Article  Google Scholar 

  13. P. Adlarson et al., Phys. Rev. C 87, 035204 (2013)

    Article  ADS  Google Scholar 

  14. S. Wycech, A.M. Green, J.A. Niskanen, Phys. Rev. C 52, 544 (1995)

    Article  ADS  Google Scholar 

  15. S. Wycech, A.M. Green, Int. J. Mod. Phys. A 20, 637 (2005)

    Article  ADS  Google Scholar 

  16. N.G. Kelkar, K.P. Khemchandani, B.K. Jain, J. Phys. G 32, 1157 (2006)

    Article  ADS  Google Scholar 

  17. N.G. Kelkar, Phys. Rev. Lett. 99, 210403 (2007)

    Article  ADS  Google Scholar 

  18. J.S. McCarthy, I. Sick, R.R. Whitney, Phys. Rev. C 15, 1396 (1977)

    Article  ADS  Google Scholar 

  19. M. Skurzok, PhD Thesis, Jagiellonian University (2015), arXiv:1509.01385

  20. N.G. Kelkar, D. Bedoya Fierro, P. Moskal, Acta Phys. Pol. B 47, 299 (2016)

    Article  Google Scholar 

  21. P. Bartsch et al., Eur. Phys. J. A 4, 209 (1999)

    Article  ADS  Google Scholar 

  22. T. Walcher, Phys. Rev. C 63, 064605 (2001)

    Article  ADS  Google Scholar 

  23. C. Chumillas, A. Parreño, A. Ramos, Nucl. Phys. A 791, 329 (2007)

    Article  ADS  Google Scholar 

  24. M. Dillig, Phys. Rev. C 14, 2226 (1976)

    Article  ADS  Google Scholar 

  25. A.B. Santra, B.K. Jain, Nucl. Phys. A 634, 309 (1998)

    Article  ADS  Google Scholar 

  26. W. Peters, U. Mosel, A. Engel, Z. Phys. A 353, 333 (1996)

    Article  ADS  Google Scholar 

  27. Ju-Jun Xie, Bing-Song Zou, Huon-Ching Chiang, Phys. Rev. C 77, 015206 (2008)

    Article  ADS  Google Scholar 

  28. A. Fix, H. Arenhövel, Nucl. Phys. A 697, 277 (2002)

    Article  ADS  Google Scholar 

  29. M. Röbig-Landau et al., Phys. Lett. B 373, 45 (1996)

    Article  ADS  Google Scholar 

  30. R. Averbeck et al., Z. Phys. A 359, 65 (1997)

    Article  ADS  Google Scholar 

  31. T. Vetter, A. Engel, T. Biró, U. Mosel, Phys. Lett. B 263, 153 (1991)

    Article  ADS  Google Scholar 

  32. A. Moalem, E. Gedalin, L. Razdolskaja, Z. Shorer, Nucl. Phys. A 589, 649 (1995)

    Article  ADS  Google Scholar 

  33. C.S. An, B. Saghai, Phys. Rev. C 84, 045204 (2011)

    Article  ADS  Google Scholar 

  34. K.P. Khemchandani, A. Martínez Torres, H. Nagahiro, A. Hosaka, Phys. Rev. D 88, 114016 (2013)

    Article  ADS  Google Scholar 

  35. E.J. Garzon, E. Oset, Phys. Rev. C 91, 025201 (2015)

    Article  ADS  Google Scholar 

  36. R.C. Carrasco, Phys. Rev. C 48, 2333 (1993)

    Article  ADS  Google Scholar 

  37. B. Lopez Alvaredo, E. Oset, Phys. Lett. B 324, 125 (1994)

    Article  ADS  Google Scholar 

  38. A. Amroun et al., Nucl. Phys. A 579, 596 (1994)

    Article  ADS  Google Scholar 

  39. J. Cook, R.J. Griffiths, Nucl. Phys. A 366, 27 (1981)

    Article  ADS  Google Scholar 

  40. D.H. Lu, K. Tsushima, A.W. Thomas, A.G. Williams, K. Saito, Phys. Lett. B 441, 27 (1998)

    Article  ADS  Google Scholar 

  41. P. Roy Chowdhury, C. Samanta, D.N. Basu, Phys. Rev. C 73, 014612 (2006)

    Article  ADS  Google Scholar 

  42. D.K. Srivastava, D.N. Basu, N.K. Ganguly, Phys. Lett. B 124, 6 (1983)

    Article  ADS  Google Scholar 

  43. S. Flügge, Practical Quantum Mechanics (Springer, Berlin, 1998)

  44. M. Ghominejad, Eur. Phys. J. Plus 128, 59 (2013)

    Article  Google Scholar 

  45. T. Yorita et al., Phys. Lett. B 476, 226 (2000)

    Article  ADS  Google Scholar 

  46. Steven D. Bass, Anthony W. Thomas, Phys. Lett. B 634, 368 (2006)

    Article  ADS  Google Scholar 

  47. A. Nogga, H. Kamada, W. Glöckle, B.R. Barrett, Phys. Rev. C 65, 054003 (2002)

    Article  ADS  Google Scholar 

  48. A. Nogga, Nuclear and hypernuclear 3 and 4 body bound states, PhD Thesis, Ruhr Universität, Bochum, 2001 (available at http://www-brs.ub.ruhr-uni-bochum.de/netahtml/HSS/Diss/NoggaAndreas/)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. G. Kelkar.

Additional information

Communicated by A. Ramos

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kelkar, N.G. Momentum distribution of N* in nuclei. Eur. Phys. J. A 52, 309 (2016). https://doi.org/10.1140/epja/i2016-16309-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2016-16309-5

Navigation